Suppr超能文献

利用石墨烯与DNA的相互作用减缓DNA运输

Slowing DNA Transport Using Graphene-DNA Interactions.

作者信息

Banerjee Shouvik, Wilson James, Shim Jiwook, Shankla Manish, Corbin Elise A, Aksimentiev Aleksei, Bashir Rashid

机构信息

Micro and Nanotechnology Laboratory, 208 North Wright Street Urbana, IL 61801, USA. Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.

Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Adv Funct Mater. 2015 Feb 11;25(6):936-946. doi: 10.1002/adfm.201403719.

Abstract

Slowing down DNA translocation speed in a nanopore is essential to ensuring reliable resolution of individual bases. Thin membrane materials enhance spatial resolution but simultaneously reduce the temporal resolution as the molecules translocate far too quickly. In this study, the effect of exposed graphene layers on the transport dynamics of both single (ssDNA) and double-stranded DNA (dsDNA) through nanopores is examined. Nanopore devices with various combinations of graphene and AlO dielectric layers in stacked membrane structures are fabricated. Slow translocations of ssDNA in nanopores drilled in membranes with layers of graphene are reported. The increased hydrophobic interactions between the ssDNA and the graphene layers could explain this phenomenon. Further confirmation of the hydrophobic origins of these interactions is obtained through reporting significantly faster translocations of dsDNA through these graphene layered membranes. Molecular dynamics simulations confirm the preferential interactions of DNA with the graphene layers as compared to the dielectric layer verifying the experimental findings. Based on our findings, we propose that the integration of multiple stacked graphene layers could slow down DNA enough to enable the identification of nucleobases.

摘要

减缓纳米孔中DNA的转运速度对于确保单个碱基的可靠分辨至关重要。薄膜材料可提高空间分辨率,但同时会降低时间分辨率,因为分子转运速度太快。在本研究中,研究了暴露的石墨烯层对单链(ssDNA)和双链DNA(dsDNA)通过纳米孔的传输动力学的影响。制备了具有石墨烯和AlO介电层各种组合的堆叠膜结构的纳米孔器件。报道了在带有石墨烯层的膜中钻出的纳米孔中ssDNA的缓慢转运。ssDNA与石墨烯层之间增加的疏水相互作用可以解释这一现象。通过报道dsDNA通过这些石墨烯层膜的转运速度明显加快,进一步证实了这些相互作用的疏水起源。分子动力学模拟证实了与介电层相比,DNA与石墨烯层之间的优先相互作用,验证了实验结果。基于我们的发现,我们提出多个堆叠石墨烯层的整合可以使DNA足够慢,从而能够识别核碱基。

相似文献

1
Slowing DNA Transport Using Graphene-DNA Interactions.
Adv Funct Mater. 2015 Feb 11;25(6):936-946. doi: 10.1002/adfm.201403719.
2
Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
Nanotechnology. 2014 Jul 11;25(27):275501. doi: 10.1088/0957-4484/25/27/275501. Epub 2014 Jun 24.
3
Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores.
Nano Lett. 2015 Dec 9;15(12):8322-30. doi: 10.1021/acs.nanolett.5b03963. Epub 2015 Nov 25.
4
Spontaneous Transport of Single-Stranded DNA through Graphene-MoS Heterostructure Nanopores.
ACS Nano. 2018 Apr 24;12(4):3886-3891. doi: 10.1021/acsnano.8b01297. Epub 2018 Apr 12.
5
DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore.
ACS Appl Bio Mater. 2021 Jan 18;4(1):451-461. doi: 10.1021/acsabm.0c00929. Epub 2020 Dec 31.
6
Spontaneous Translocation of Single-Stranded DNA in Graphene-MoS Heterostructure Nanopores: Shape Effect.
J Phys Chem B. 2020 Oct 29;124(43):9490-9496. doi: 10.1021/acs.jpcb.0c06934. Epub 2020 Oct 16.
7
Identifying Single-Stranded DNA by Tuning the Graphene Nanogap Size: An Ionic Current Approach.
J Phys Chem B. 2022 Feb 17;126(6):1178-1187. doi: 10.1021/acs.jpcb.1c09266. Epub 2022 Feb 2.
8
Electrophoretic Transport of Single-Stranded DNA through a Two Dimensional Nanopore Patterned on an In-Plane Heterostructure.
ACS Nano. 2020 Oct 27;14(10):13137-13145. doi: 10.1021/acsnano.0c04743. Epub 2020 Sep 17.
9
Ionic Liquid Decelerates Single-Stranded DNA Transport through Molybdenum Disulfide Nanopores.
ACS Appl Mater Interfaces. 2022 Jul 20;14(28):32618-32624. doi: 10.1021/acsami.2c03335. Epub 2022 Jul 7.
10
DNA translocation through single-layer boron nitride nanopores.
Soft Matter. 2016 Jan 21;12(3):817-23. doi: 10.1039/c5sm02197a. Epub 2015 Nov 5.

引用本文的文献

1
Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials.
Appl Phys Rev. 2024 Mar;11(1). doi: 10.1063/5.0171364. Epub 2024 Jan 26.
2
Solid-State Nanopores for Biomolecular Analysis and Detection.
Adv Biochem Eng Biotechnol. 2024;187:283-316. doi: 10.1007/10_2023_240.
3
Effective Modulation of Ion Mobility through Solid-State Single-Digit Nanopores.
Nanomaterials (Basel). 2022 Nov 9;12(22):3946. doi: 10.3390/nano12223946.
4
Spontaneous DNA translocation through a van der Waals heterostructure nanopore for single-molecule detection.
Nanoscale Adv. 2021 Aug 16;3(20):5941-5947. doi: 10.1039/d1na00476j. eCollection 2021 Oct 12.
5
Profiling single-molecule reaction kinetics under nanopore confinement.
Chem Sci. 2022 Mar 14;13(14):4109-4114. doi: 10.1039/d1sc06837g. eCollection 2022 Apr 6.
6
Simultaneous detection of multiple proteases using a non-array nanopore platform.
Nanoscale. 2021 Aug 28;13(32):13658-13664. doi: 10.1039/d1nr04085e. Epub 2021 Aug 3.
7
Single-Entity Detection With TEM-Fabricated Nanopores.
Front Chem. 2021 May 7;9:664820. doi: 10.3389/fchem.2021.664820. eCollection 2021.
8
Slowing down DNA translocation through solid-state nanopores by edge-field leakage.
Nat Commun. 2021 Jan 8;12(1):140. doi: 10.1038/s41467-020-20409-4.
10
Salt-Mediated Nanopore Detection of ADAM-17.
ACS Appl Bio Mater. 2019 Jan 22;2(1):504-509. doi: 10.1021/acsabm.8b00689. Epub 2018 Dec 24.

本文引用的文献

3
A Coarse-Grained Model of Unstructured Single-Stranded DNA Derived from Atomistic Simulation and Single-Molecule Experiment.
J Chem Theory Comput. 2014 Aug 12;10(8):2891-2896. doi: 10.1021/ct500193u. Epub 2014 Jun 3.
5
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
6
Detecting the translocation of DNA through a nanopore using graphene nanoribbons.
Nat Nanotechnol. 2013 Dec;8(12):939-45. doi: 10.1038/nnano.2013.240. Epub 2013 Nov 17.
7
Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores.
Nat Nanotechnol. 2013 Dec;8(12):946-51. doi: 10.1038/nnano.2013.221. Epub 2013 Nov 3.
8
Slowing DNA translocation through a nanopore using a functionalized electrode.
ACS Nano. 2013 Nov 26;7(11):10319-26. doi: 10.1021/nn404743f. Epub 2013 Oct 29.
10
Slow DNA transport through nanopores in hafnium oxide membranes.
ACS Nano. 2013 Nov 26;7(11):10121-10128. doi: 10.1021/nn404326f. Epub 2013 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验