Barberis Lucas, Peruani Fernando
Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France.
IFEG, FaMAF, CONICET, UNC, X5000HUA Córdoba, Argentina.
Phys Rev Lett. 2016 Dec 9;117(24):248001. doi: 10.1103/PhysRevLett.117.248001. Epub 2016 Dec 6.
We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit-due to the VC that breaks Newton's third law-various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving-locally polar-files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.
我们研究了一种最小认知群聚模型,该模型假定移动实体仅利用可用的瞬时视觉信息进行导航。该模型由无记忆的活性粒子组成,这些粒子通过作用于视锥(VC)内的短程、基于位置的吸引力相互作用,且缺乏速度-速度对齐。我们表明,由于视锥打破了牛顿第三定律,这个活性系统能够展现出各种复杂的、大规模的、自组织模式。根据参数值,我们观察到聚集体或类似 milling 的模式的出现、移动的局部极性队列的形成(这些结构前端的粒子充当有效的领导者),以及粒子自组织成宏观向列结构并导致长程向列有序。结合模拟和非线性场方程,我们表明,如此处分析这样的基于位置的活性模型,代表了一类与其他活性系统根本不同的新型活性系统,包括基于速度对齐的群聚系统。所报告的结果对于研究、解释和建模活的和非活的活性系统中的集体运动模式至关重要。