Mahmoodian Sahand, Lodahl Peter, Sørensen Anders S
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
Phys Rev Lett. 2016 Dec 9;117(24):240501. doi: 10.1103/PhysRevLett.117.240501. Epub 2016 Dec 5.
We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-light-matter interfaces. The efficient chiral-light-matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that, by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F∼0.998 achievable in state-of-the-art quantum dot systems.
我们基于一个简单的片上光子电路提出了一种可扩展的量子网络架构,该电路可执行容错两比特测量。该电路由两个量子发射器组成,它们位于一个片上马赫 - 曾德尔干涉仪的臂中,该干涉仪由具有手性光 - 物质界面的波导构成。高效的手性光 - 物质相互作用使发射器能够在单个芯片内执行高保真的节点内两比特奇偶性测量,并发射光子以产生节点间纠缠,而无需任何重新配置。我们表明,通过将多个此类电路连接成一个量子网络,有可能以在最先进的量子点系统中可实现的约F∼0.998的预示两比特门保真度来执行通用量子计算。