Petitgirard Sylvain, Spiekermann Georg, Weis Christopher, Sahle Christoph, Sternemann Christian, Wilke Max
University of Bayreuth, Bayerisches Geoinstitut, Universitätsstrasse 30, Bayreuth, 95447, Germany.
Universität Potsdam, Potsdam, Germany.
J Synchrotron Radiat. 2017 Jan 1;24(Pt 1):276-282. doi: 10.1107/S1600577516017112.
X-ray Raman scattering (XRS) spectroscopy is an inelastic scattering method that uses hard X-rays of the order of 10 keV to measure energy-loss spectra at absorption edges of light elements (Si, Mg, O etc.), with an energy resolution below 1 eV. The high-energy X-rays employed with this technique can penetrate thick or dense sample containers such as the diamond anvils employed in high-pressure cells. Here, we describe the use of custom-made conical miniature diamond anvils of less than 500 µm thickness which allow pressure generation of up to 70 GPa. This set-up overcomes the limitations of the XRS technique in very high-pressure measurements (>10 GPa) by drastically improving the signal-to-noise ratio. The conical shape of the base of the diamonds gives a 70° opening angle, enabling measurements in both low- and high-angle scattering geometry. This reduction of the diamond thickness to one-third of the classical diamond anvils considerably lowers the attenuation of the incoming and the scattered beams and thus enhances the signal-to-noise ratio significantly. A further improvement of the signal-to-background ratio is obtained by a recess of ∼20 µm that is milled in the culet of the miniature anvils. This recess increases the sample scattering volume by a factor of three at a pressure of 60 GPa. Examples of X-ray Raman spectra collected at the O K-edge and Si L-edge in SiO glass at high pressures up to 47 GPa demonstrate the significant improvement and potential for spectroscopic studies of low-Z elements at high pressure.
X射线拉曼散射(XRS)光谱学是一种非弹性散射方法,它使用能量约为10 keV的硬X射线来测量轻元素(硅、镁、氧等)吸收边缘处的能量损失谱,能量分辨率低于1 eV。该技术使用的高能X射线可以穿透厚壁或致密的样品容器,例如高压腔中使用的金刚石砧座。在此,我们描述了使用厚度小于500 µm的定制锥形微型金刚石砧座,其可产生高达70 GPa的压力。通过大幅提高信噪比,这种设置克服了XRS技术在超高压测量(>10 GPa)中的局限性。金刚石基部的锥形开口角度为70°,能够在低角度和高角度散射几何构型下进行测量。将金刚石厚度减小到传统金刚石砧座的三分之一,可大大降低入射光束和散射光束的衰减,从而显著提高信噪比。通过在微型砧座的台面研磨一个约20 µm的凹槽,可进一步提高信背比。在60 GPa的压力下,这个凹槽使样品散射体积增加了两倍。在高达47 GPa的高压下,在SiO玻璃的O K边缘和Si L边缘收集的X射线拉曼光谱示例,证明了在高压下对低Z元素进行光谱研究的显著改进和潜力。