Paolino Jon-Paul
Jon-Paul Paolino, 63 Cornwells Beach Road, Port Washington, NY 11050, USA,
J Appl Meas. 2016;17(2):185-193.
In this paper we propose using the k-nearest neighbors (k-NN) algorithm (Cover and Hart, 1967) for classifying and predicting the responses to dichotomous items. We show using the percent correct statistic how k-NN can be used with Rasch model parameter estimation methods such as joint maximum likelihood (JMLE), conditional maximum likelihood estimation (CMLE), marginal maximum likelihood estimation (MMLE), and marginal Bayes modal estimation (MBME). We further suggest how one can use the algorithm to predict responses on future assessments. The empirical data set that we used to illustrate this procedure was the fraction subtraction data set from Tatsuoka (1984). Using R software we show the accuracy and efficacy of k-NN for classifying responses.
在本文中,我们提议使用k近邻(k-NN)算法(Cover和Hart,1967)对二分项目的反应进行分类和预测。我们使用正确率统计量展示了k-NN如何与Rasch模型参数估计方法(如联合极大似然估计(JMLE)、条件极大似然估计(CMLE)、边际极大似然估计(MMLE)和边际贝叶斯模态估计(MBME))一起使用。我们进一步说明了如何使用该算法预测未来评估中的反应。我们用于说明此过程的实证数据集是Tatsuoka(1984)的分数减法数据集。使用R软件,我们展示了k-NN在分类反应方面的准确性和有效性。