Suppr超能文献

使用基于量子力学的描述符对有机阴离子的牛血清白蛋白-水分配系数进行3D-QSAR预测。

3D-QSAR predictions for bovine serum albumin-water partition coefficients of organic anions using quantum mechanically based descriptors.

作者信息

Linden Lukas, Goss Kai-Uwe, Endo Satoshi

机构信息

Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, D-04318 Leipzig, Germany.

Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, D-04318 Leipzig, Germany and University of Halle-Wittenberg, Institute of Chemistry, Kurt Mothes Str. 2, D-06120 Halle, Germany.

出版信息

Environ Sci Process Impacts. 2017 Mar 22;19(3):261-269. doi: 10.1039/c6em00555a.

Abstract

Ionic organic chemicals are a class of chemicals that is released in the environment in a large amount from anthropogenic sources. Among various chemical and biological processes, binding to serum albumin is particularly relevant for the toxicokinetic behavior of ionic chemicals. Several experimental studies showed that steric effects have a crucial influence on the sorption to bovine serum albumin (BSA). In this study, we investigated whether a 3D quantitative structure-activity relationship (3D-QSAR) model can accurately account for these steric effects by predicting the BSA-water partition coefficients (K) of neutral and anionic organic chemicals. The 3D-QSAR tested here uses quantum mechanically derived local sigma profiles as descriptors. In general, the 3D-QSAR model was able to predict the partition coefficients of neutral and anionic chemicals with an acceptable quality (RMSE 0.63 ± 0.10, R 0.52 ± 0.15, both for log K). Particularly notable is that steric effects that cause a large difference in the log K values between isomers were successfully reproduced by the model. The prediction of unknown K values with the proposed model should contribute to improved environmental and toxicological assessments of chemicals.

摘要

离子有机化学品是一类从人为源大量释放到环境中的化学品。在各种化学和生物过程中,与血清白蛋白结合对于离子化学品的毒代动力学行为尤为重要。多项实验研究表明,空间效应对于牛血清白蛋白(BSA)的吸附具有关键影响。在本研究中,我们调查了三维定量构效关系(3D-QSAR)模型能否通过预测中性和阴离子有机化学品的BSA-水分配系数(K)来准确解释这些空间效应。此处测试的3D-QSAR使用量子力学推导的局部σ轮廓作为描述符。总体而言,3D-QSAR模型能够以可接受的质量预测中性和阴离子化学品的分配系数(log K的RMSE为0.63±0.10,R为0.52±0.15)。特别值得注意的是,该模型成功再现了导致异构体之间log K值存在较大差异的空间效应。使用所提出的模型预测未知的K值应有助于改进化学品的环境和毒理学评估。

相似文献

2
Development and evaluation of predictive model for bovine serum albumin-water partition coefficients of neutral organic chemicals.
Ecotoxicol Environ Saf. 2017 Apr;138:92-97. doi: 10.1016/j.ecoenv.2016.12.022. Epub 2016 Dec 23.
4
Equilibrium Sorption of Structurally Diverse Organic Ions to Bovine Serum Albumin.
Environ Sci Technol. 2016 May 17;50(10):5119-26. doi: 10.1021/acs.est.5b06176. Epub 2016 May 2.
5
3D-QSAR predictions for α-cyclodextrin binding constants using quantum mechanically based descriptors.
Chemosphere. 2017 Feb;169:693-699. doi: 10.1016/j.chemosphere.2016.11.115. Epub 2016 Nov 30.
6
Serum albumin binding of structurally diverse neutral organic compounds: data and models.
Chem Res Toxicol. 2011 Dec 19;24(12):2293-301. doi: 10.1021/tx200431b. Epub 2011 Nov 23.
8
Predicting solvent-water partitioning of charged organic species using quantum-chemically estimated Abraham pp-LFER solute parameters.
Chemosphere. 2016 Dec;164:634-642. doi: 10.1016/j.chemosphere.2016.08.135. Epub 2016 Sep 13.

引用本文的文献

1
Predicting the Accumulation of Ionizable Pharmaceuticals and Personal Care Products in Aquatic and Terrestrial Organisms.
Environ Toxicol Chem. 2024 Mar;43(3):502-512. doi: 10.1002/etc.5451. Epub 2022 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验