Purnell Marcy C, Skrinjar Terence J
Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
The Loewenberg College of Nursing, University of Memphis, Memphis, TN 38152, USA.
Discov Med. 2016 Nov;22(122):257-273.
Chloride channels represent ubiquitously expressed proteins that regulate fundamental cellular processes including membrane potential, maintenance of intracellular pH, and regulation of cell volume. However, mechanisms to modulate this large family of ion channels have remained elusive to date. This large chloride channel family does not appear to operate with selectivity similar to the sodium and potassium channels. These unique channels appear to be bi-directional cotransporters of two or more different molecules or ions across a bilayer phospholipid membrane. Here we show how 3 amperes of direct current from a device that generates an electromagnetic field in a 3 mM hypotonic saline solution leads to a dielectrophoretic disassociation of the chloride ion from its chloro-metabolites transforming it into a polymorphic diamagnetically disassociated bio-chloride (bCl-). This field treated aqueous solution appears to continue to induce a magnetic moment change in solution for some hours when no longer under the influence of the direct current; for when this field influenced solution is used to reconstitute growth media of human breast carcinoma (MDA-MB-231) and human breast epithelial (MCF-10A) cells in vitro, significant changes in chloride ion channel expression, membrane potential, cell volume, and a massive transcriptional reprogramming of 2,468 genes expressions by Human Genome U133 Plus 2.0 Gene Chip Array (Affymetrix) analyses occur. We will highlight how the strong changes in chloride ion channel expression and cell physiology could be intricately linked to enhanced diamagnetic anisotropy in cell membranes that occur under the influence of this disassociated polymorphic bCl-.
氯离子通道是普遍表达的蛋白质,可调节包括膜电位、细胞内pH值维持以及细胞体积调节等基本细胞过程。然而,迄今为止,调节这一大家族离子通道的机制仍不清楚。这个庞大的氯离子通道家族似乎不像钠通道和钾通道那样具有选择性地运作。这些独特的通道似乎是两种或更多不同分子或离子跨双层磷脂膜的双向共转运体。在这里,我们展示了在3 mM低渗盐溶液中产生电磁场的设备产生的3安培直流电如何导致氯离子与其氯代谢产物发生介电泳解离,将其转化为多晶型抗磁解离生物氯化物(bCl-)。当不再受直流电影响时,这种经电场处理的水溶液似乎会在数小时内持续诱导溶液中的磁矩变化;因为当用这种受电场影响的溶液在体外重新构成人乳腺癌(MDA-MB-231)和人乳腺上皮(MCF-10A)细胞生长培养基时,通过人类基因组U133 Plus 2.0基因芯片阵列(Affymetrix)分析发现,氯离子通道表达、膜电位、细胞体积发生了显著变化,并且有2468个基因表达出现了大规模的转录重编程。我们将强调氯离子通道表达和细胞生理学的强烈变化如何与在这种解离的多晶型bCl-影响下细胞膜中增强的抗磁各向异性复杂地联系在一起。