Suppr超能文献

非均匀液体的奥恩斯坦-泽尔尼克关系的解析解。

Analytic solution of the Ornstein-Zernike relation for inhomogeneous liquids.

作者信息

He Yan, Rice Stuart A, Xu Xinliang

机构信息

College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.

The James Franck Institute and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Chem Phys. 2016 Dec 21;145(23):234508. doi: 10.1063/1.4972020.

Abstract

The properties of a classical simple liquid are strongly affected by the application of an external potential that supports inhomogeneity. To understand the nature of these property changes, the equilibrium particle distribution functions of the liquid have, typically, been calculated directly using either integral equation or density functional based analyses. In this study, we develop a different approach with a focus on two distribution functions that characterize the inhomogeneous liquid: the pair direct correlation function c(r,r) and the pair correlation function g(r,r). With g(r,r) considered to be an experimental observable, we solve the Ornstein-Zernike equation for the inhomogeneous liquid to obtain c(r,r), using information about the well studied and resolved g(r,r) and c(r,r) for the parent homogeneous () system. In practical cases, where g(r,r) is available from experimental data in a discrete form, the resulting c(r,r) is expressed as an explicit function of g(r,r) in a discrete form. A weaker continuous form of solution is also obtained, in the form of an integral equation with finite integration limits. The result obtained with our formulation is tested against the exact solutions for the correlation and distribution functions of a one-dimensional inhomogeneous hard rod liquid. Following the success of that test, the formalism is extended to higher dimensional systems with explicit consideration of the two-dimensional liquid.

摘要

经典简单液体的性质会受到支持非均匀性的外部势的强烈影响。为了理解这些性质变化的本质,通常直接使用基于积分方程或密度泛函的分析来计算液体的平衡粒子分布函数。在本研究中,我们开发了一种不同的方法,重点关注表征非均匀液体的两个分布函数:对直接关联函数c(r,r)和对关联函数g(r,r)。由于g(r,r)被视为一个实验可观测值,我们利用关于已充分研究和解析的母体均匀()系统的g(r,r)和c(r,r)的信息,求解非均匀液体的奥恩斯坦 - 泽尼克方程以获得c(r,r)。在实际情况中,当g(r,r)以离散形式从实验数据中获取时,所得的c(r,r)以离散形式表示为g(r,r)的显式函数。还以具有有限积分限的积分方程形式获得了较弱的连续形式解。用我们的公式得到的结果与一维非均匀硬棒液体的关联函数和分布函数的精确解进行了对比测试。在该测试成功之后,该形式体系被扩展到更高维系统,并明确考虑了二维液体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验