Suppr超能文献

发声模式的进化:在物种分化过程中调整后脑回路。

Evolution of vocal patterns: tuning hindbrain circuits during species divergence.

作者信息

Barkan Charlotte L, Zornik Erik, Kelley Darcy B

机构信息

Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA.

Biology Department, Reed College, Portland, OR 97202, USA.

出版信息

J Exp Biol. 2017 Mar 1;220(Pt 5):856-867. doi: 10.1242/jeb.146845. Epub 2016 Dec 23.

Abstract

The neural circuits underlying divergent courtship behaviors of closely related species provide a framework for insight into the evolution of motor patterns. In frogs, male advertisement calls serve as unique species identifiers and females prefer conspecific to heterospecific calls. Advertisement calls of three relatively recently (∼8.5 Mya) diverged species - , and - include rapid trains of sound pulses (fast trills). We show that while fast trills are similar in pulse rate (∼60 pulses s) across the three species, they differ in call duration and period (time from the onset of one call to the onset of the following call). Previous studies of call production in used an isolated brain preparation in which the laryngeal nerve produces compound action potentials that correspond to the advertisement call pattern (fictive calling). Here, we show that serotonin evokes fictive calling in and as it does in As in , fictive fast trill in and is accompanied by an -methyl-d-aspartate receptor-dependent local field potential wave in a rostral hindbrain nucleus, DTAM. Across the three species, wave duration and period are strongly correlated with species-specific fast trill duration and period, respectively. When DTAM is isolated from the more rostral forebrain and midbrain and/or more caudal laryngeal motor nucleus, the wave persists at species-typical durations and periods. Thus, intrinsic differences within DTAM could be responsible for the evolutionary divergence of call patterns across these related species.

摘要

亲缘关系相近的物种中,不同求偶行为背后的神经回路为深入了解运动模式的进化提供了一个框架。在青蛙中,雄性的广告叫声是独特的物种标识符,雌性更喜欢同种的叫声而非异种的叫声。三种亲缘关系较近(约850万年前)分化出来的物种—— 、 和 的广告叫声中都包含快速的声脉冲序列(快速颤音)。我们发现,虽然这三种物种的快速颤音在脉冲率上相似(约60次脉冲/秒),但在叫声持续时间和周期(从一个叫声开始到下一个叫声开始的时间)上存在差异。之前对 叫声产生的研究使用了一种离体脑标本,其中喉神经产生与广告叫声模式相对应的复合动作电位(虚构鸣叫)。在这里,我们表明血清素在 和 中诱发虚构鸣叫的方式与在 中相同。与 在 中一样, 和 中的虚构快速颤音在延髓前脑核DTAM中伴随着一种依赖于N-甲基-D-天冬氨酸受体的局部场电位波。在这三个物种中,该波的持续时间和周期分别与物种特异性的快速颤音持续时间和周期密切相关。当DTAM与更靠前的前脑和中脑以及/或更靠后的喉运动核分离时,该波在物种典型的持续时间和周期内持续存在。因此,DTAM内部的内在差异可能是这些相关物种叫声模式进化分化的原因。

相似文献

1
Evolution of vocal patterns: tuning hindbrain circuits during species divergence.
J Exp Biol. 2017 Mar 1;220(Pt 5):856-867. doi: 10.1242/jeb.146845. Epub 2016 Dec 23.
2
Premotor Neuron Divergence Reflects Vocal Evolution.
J Neurosci. 2018 Jun 6;38(23):5325-5337. doi: 10.1523/JNEUROSCI.0089-18.2018. Epub 2018 May 21.
3
NMDAR-dependent control of call duration in Xenopus laevis.
J Neurophysiol. 2010 Jun;103(6):3501-15. doi: 10.1152/jn.00155.2010. Epub 2010 Apr 14.
4
Rhythm generation, coordination, and initiation in the vocal pathways of male African clawed frogs.
J Neurophysiol. 2017 Jan 1;117(1):178-194. doi: 10.1152/jn.00628.2016. Epub 2016 Oct 19.
5
Distinct neural and neuromuscular strategies underlie independent evolution of simplified advertisement calls.
Proc Biol Sci. 2013 Feb 13;280(1756):20122639. doi: 10.1098/rspb.2012.2639. Print 2013 Apr 7.
6
Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication.
J Neurosci. 2020 Jan 2;40(1):22-36. doi: 10.1523/JNEUROSCI.0736-19.2019.
7
Xenopus vocalizations are controlled by a sexually differentiated hindbrain central pattern generator.
J Neurosci. 2007 Feb 7;27(6):1485-97. doi: 10.1523/JNEUROSCI.4720-06.2007.
8
Temperature-dependent regulation of vocal pattern generator.
J Neurophysiol. 2008 Dec;100(6):3134-43. doi: 10.1152/jn.01309.2007. Epub 2008 Oct 1.
9
Breathing and calling: neuronal networks in the Xenopus laevis hindbrain.
J Comp Neurol. 2007 Mar 20;501(3):303-15. doi: 10.1002/cne.21145.
10
Regulation of respiratory and vocal motor pools in the isolated brain of Xenopus laevis.
J Neurosci. 2008 Jan 16;28(3):612-21. doi: 10.1523/JNEUROSCI.4754-07.2008.

引用本文的文献

1
Neuroendocrine mechanisms contributing to the coevolution of sociality and communication.
Front Neuroendocrinol. 2023 Jul;70:101077. doi: 10.1016/j.yfrne.2023.101077. Epub 2023 May 20.
3
Evolution of central neural circuits: state of the art and perspectives.
Nat Rev Neurosci. 2022 Dec;23(12):725-743. doi: 10.1038/s41583-022-00644-y. Epub 2022 Oct 26.
4
Neural basis of acoustic species recognition in a cryptic species complex.
J Exp Biol. 2021 Dec 1;224(23). doi: 10.1242/jeb.243405. Epub 2021 Dec 9.
5
Xenopus leads the way: Frogs as a pioneering model to understand the human brain.
Genesis. 2021 Feb;59(1-2):e23405. doi: 10.1002/dvg.23405. Epub 2020 Dec 27.
6
Stress Varies Along the Social Density Continuum.
Front Syst Neurosci. 2020 Oct 20;14:582985. doi: 10.3389/fnsys.2020.582985. eCollection 2020.
7
Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication.
J Neurosci. 2020 Jan 2;40(1):22-36. doi: 10.1523/JNEUROSCI.0736-19.2019.
8
Feedback to the future: motor neuron contributions to central pattern generator function.
J Exp Biol. 2019 Aug 16;222(Pt 16):jeb193318. doi: 10.1242/jeb.193318.

本文引用的文献

1
SPECIES RECOGNITION AND SEXUAL SELECTION AS A UNITARY PROBLEM IN ANIMAL COMMUNICATION.
Evolution. 1993 Apr;47(2):647-657. doi: 10.1111/j.1558-5646.1993.tb02118.x.
3
The Kölliker-Fuse nucleus: a review of animal studies and the implications for cranial nerve function in humans.
Eur Arch Otorhinolaryngol. 2016 Nov;273(11):3505-3510. doi: 10.1007/s00405-015-3861-9. Epub 2015 Dec 19.
4
Species specificity of temporal processing in the auditory midbrain of gray treefrogs: long-interval neurons.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Jan;202(1):67-79. doi: 10.1007/s00359-015-1054-z. Epub 2015 Nov 27.
5
Evolution of central pattern generators and rhythmic behaviours.
Philos Trans R Soc Lond B Biol Sci. 2016 Jan 5;371(1685):20150057. doi: 10.1098/rstb.2015.0057.
6
Brain evolution by brain pathway duplication.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0056.
7
Testing the evolutionary conservation of vocal motoneurons in vertebrates.
Respir Physiol Neurobiol. 2016 Apr;224:2-10. doi: 10.1016/j.resp.2015.06.010. Epub 2015 Jul 6.
8
Evolution of Courtship Songs in Xenopus : Vocal Pattern Generation and Sound Production.
Cytogenet Genome Res. 2015;145(3-4):302-14. doi: 10.1159/000433483. Epub 2015 Jun 26.
9
An astrocyte-dependent mechanism for neuronal rhythmogenesis.
Nat Neurosci. 2015 Jun;18(6):844-54. doi: 10.1038/nn.4013. Epub 2015 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验