Suppr超能文献

简化的广告叫声的独立进化有其独特的神经和神经肌肉策略。

Distinct neural and neuromuscular strategies underlie independent evolution of simplified advertisement calls.

机构信息

Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, NY, USA.

出版信息

Proc Biol Sci. 2013 Feb 13;280(1756):20122639. doi: 10.1098/rspb.2012.2639. Print 2013 Apr 7.

Abstract

Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors.

摘要

独立或趋同进化可以为衍生行为特征的表型相似性提供基础。确定潜在的神经和神经肌肉机制可以揭示这些特征是如何产生的。进化衍生特征的一个例子是雄性非洲爪蟾(Xenopus)的 temporally simple advertisement call,它至少从一个更复杂的祖先模式中独立进化而来两次。在发声回路中,简化是如何发生的?为了区分共享和分歧的机制,我们在两个独立进化出简化叫声的物种中检查了发声脑和发声器官(喉)的活动。我们发现,每个物种都使用不同的神经和神经肌肉策略来产生简化的叫声。分离的 Xenopus borealis 大脑产生与实际雄性叫声的时间模式相匹配的虚构发声模式;喉将神经活动忠实地转化为肌肉收缩和单点击声。相比之下,分离的 Xenopus boumbaensis 大脑产生的虚构模式是神经活动的短爆发;孤立的喉需要刺激爆发才能产生单一的点击声。因此,与 X. borealis 不同,X. boumbaensis 后脑发声模式发生器的输出是一种祖先的爆发型模式,由喉转化为单点击声。因此,在遗传上不同的 Xenopus 物种中出现的 temporally simple advertisement call 是通过中枢和外周发声神经效应器的重新配置而独立产生的。

相似文献

1
Distinct neural and neuromuscular strategies underlie independent evolution of simplified advertisement calls.
Proc Biol Sci. 2013 Feb 13;280(1756):20122639. doi: 10.1098/rspb.2012.2639. Print 2013 Apr 7.
2
Premotor Neuron Divergence Reflects Vocal Evolution.
J Neurosci. 2018 Jun 6;38(23):5325-5337. doi: 10.1523/JNEUROSCI.0089-18.2018. Epub 2018 May 21.
3
Evolution of vocal patterns: tuning hindbrain circuits during species divergence.
J Exp Biol. 2017 Mar 1;220(Pt 5):856-867. doi: 10.1242/jeb.146845. Epub 2016 Dec 23.
4
Rhythm generation, coordination, and initiation in the vocal pathways of male African clawed frogs.
J Neurophysiol. 2017 Jan 1;117(1):178-194. doi: 10.1152/jn.00628.2016. Epub 2016 Oct 19.
5
Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication.
J Neurosci. 2020 Jan 2;40(1):22-36. doi: 10.1523/JNEUROSCI.0736-19.2019.
8
Xenopus vocalizations are controlled by a sexually differentiated hindbrain central pattern generator.
J Neurosci. 2007 Feb 7;27(6):1485-97. doi: 10.1523/JNEUROSCI.4720-06.2007.
9
NMDAR-dependent control of call duration in Xenopus laevis.
J Neurophysiol. 2010 Jun;103(6):3501-15. doi: 10.1152/jn.00155.2010. Epub 2010 Apr 14.
10
Evolution of Courtship Songs in Xenopus : Vocal Pattern Generation and Sound Production.
Cytogenet Genome Res. 2015;145(3-4):302-14. doi: 10.1159/000433483. Epub 2015 Jun 26.

引用本文的文献

1
Convergent and divergent neural circuit architectures that support acoustic communication.
Front Neural Circuits. 2022 Nov 17;16:976789. doi: 10.3389/fncir.2022.976789. eCollection 2022.
2
Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication.
J Neurosci. 2020 Jan 2;40(1):22-36. doi: 10.1523/JNEUROSCI.0736-19.2019.
4
Probing forebrain to hindbrain circuit functions in Xenopus.
Genesis. 2017 Jan;55(1-2). doi: 10.1002/dvg.22999.
5
Evolution of vocal patterns: tuning hindbrain circuits during species divergence.
J Exp Biol. 2017 Mar 1;220(Pt 5):856-867. doi: 10.1242/jeb.146845. Epub 2016 Dec 23.

本文引用的文献

2
Evolution of advertisement calls in African clawed frogs.
Behaviour. 2011;148(4):519-549. doi: 10.1163/000579511X569435.
3
Complex brain and optic lobes in an early Cambrian arthropod.
Nature. 2012 Oct 11;490(7419):258-61. doi: 10.1038/nature11495.
5
Birdsong performance and the evolution of simple (rather than elaborate) sexual signals.
Am Nat. 2011 Nov;178(5):679-86. doi: 10.1086/662160. Epub 2011 Sep 29.
6
Neural mechanisms underlying the evolvability of behaviour.
Philos Trans R Soc Lond B Biol Sci. 2011 Jul 27;366(1574):2086-99. doi: 10.1098/rstb.2010.0336.
7
Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors.
Curr Biol. 2011 Jun 21;21(12):1036-43. doi: 10.1016/j.cub.2011.04.040. Epub 2011 May 27.
8
NMDAR-dependent control of call duration in Xenopus laevis.
J Neurophysiol. 2010 Jun;103(6):3501-15. doi: 10.1152/jn.00155.2010. Epub 2010 Apr 14.
9
Phylogeny, biogeography, and electric signal evolution of Neotropical knifefishes of the genus Gymnotus (Osteichthyes: Gymnotidae).
Mol Phylogenet Evol. 2010 Jan;54(1):278-90. doi: 10.1016/j.ympev.2009.09.017. Epub 2009 Sep 15.
10
Regulation of respiratory and vocal motor pools in the isolated brain of Xenopus laevis.
J Neurosci. 2008 Jan 16;28(3):612-21. doi: 10.1523/JNEUROSCI.4754-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验