Suppr超能文献

疾病关联随连锁不平衡下降的衰减:一个精细定位定理。

The Decay of Disease Association with Declining Linkage Disequilibrium: A Fine Mapping Theorem.

作者信息

Maadooliat Mehdi, Bansal Naveen K, Upadhya Jiblal, Farazi Manzur R, Li Xiang, He Max M, Hebbring Scott J, Ye Zhan, Schrodi Steven J

机构信息

Department of Mathematics, Statistics and Computer Science, Marquette UniversityMilwaukee, WI, USA; Center for Human Genetics, Marshfield Clinic Research FoundationMarshfield, WI, USA.

Department of Mathematics, Statistics and Computer Science, Marquette University Milwaukee, WI, USA.

出版信息

Front Genet. 2016 Dec 12;7:217. doi: 10.3389/fgene.2016.00217. eCollection 2016.

Abstract

Several important and fundamental aspects of disease genetics models have yet to be described. One such property is the relationship of disease association statistics at a marker site closely linked to a disease causing site. A complete description of this two-locus system is of particular importance to experimental efforts to fine map association signals for complex diseases. Here, we present a simple relationship between disease association statistics and the decline of linkage disequilibrium from a causal site. Specifically, the ratio of Chi-square disease association statistics at a marker site and causal site is equivalent to the standard measure of pairwise linkage disequilibrium, . A complete derivation of this relationship from a general disease model is shown. Quite interestingly, this relationship holds across all modes of inheritance. Extensive Monte Carlo simulations using a disease genetics model applied to chromosomes subjected to a standard model of recombination are employed to better understand the variation around this fine mapping theorem due to sampling effects. We also use this relationship to provide a framework for estimating properties of a non-interrogated causal site using data at closely linked markers. Lastly, we apply this way of examining association data from high-density genotyping in a large, publicly-available data set investigating extreme BMI. We anticipate that understanding the patterns of disease association decay with declining linkage disequilibrium from a causal site will enable more powerful fine mapping methods and provide new avenues for identifying causal sites/genes from fine-mapping studies.

摘要

疾病遗传学模型的几个重要且基本的方面尚未得到描述。其中一个特性是与致病位点紧密连锁的标记位点处疾病关联统计量之间的关系。对这个双位点系统的完整描述对于复杂疾病关联信号精细定位的实验工作尤为重要。在此,我们给出了疾病关联统计量与从致病位点起连锁不平衡衰减之间的简单关系。具体而言,标记位点和致病位点处卡方疾病关联统计量的比值等同于成对连锁不平衡的标准度量。展示了从一般疾病模型对这种关系的完整推导。非常有趣的是,这种关系在所有遗传模式中都成立。我们采用广泛的蒙特卡罗模拟,利用应用于遵循标准重组模型的染色体的疾病遗传学模型,来更好地理解由于抽样效应围绕这个精细定位定理的变异。我们还利用这种关系提供一个框架,以便使用紧密连锁标记处的数据来估计未被检测的致病位点的特性。最后,我们将这种检查来自高密度基因分型的关联数据的方法应用于一个大型公开可用数据集中,该数据集研究极端体重指数。我们预计,了解疾病关联随从致病位点起连锁不平衡衰减的模式,将能够实现更强大的精细定位方法,并为从精细定位研究中识别致病位点/基因提供新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验