Suppr超能文献

金纳米星的消光系数。

Extinction Coefficient of Gold Nanostars.

作者信息

de Puig Helena, Tam Justina O, Yen Chun-Wan, Gehrke Lee, Hamad-Schifferli Kimberly

机构信息

Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge, MA USA 02139; Winchester Engineering Analytical Center, Food and Drug Administration. Winchester MA USA 01890.

出版信息

J Phys Chem C Nanomater Interfaces. 2015 Jul 30;119(30):17408-17415. doi: 10.1021/acs.jpcc.5b03624. Epub 2015 Jul 15.

Abstract

Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 to 26.8 × 10 Mcm. Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.

摘要

金纳米星(NStars)因其表面化学性质、易于合成以及光学特性,在生物应用方面极具吸引力。在此,我们在不同HEPES/Au比例的HEPES缓冲液中合成NStars,得到了不同尺寸和形状的NStars,因而其光学特性也有所不同。我们测量了合成的NStars在其最大表面等离子体共振(SPR)处的消光系数,范围为5.7×10至26.8×10Mcm。测量值与使用离散偶极近似(DDA)的NStars理论模型所得结果相关,我们用该模型模拟纳米星的消光光谱。最后,由于NStars通常用于生物应用,我们将DNA和抗体与NStars偶联,并计算结合生物分子的覆盖面积。

相似文献

1
Extinction Coefficient of Gold Nanostars.
J Phys Chem C Nanomater Interfaces. 2015 Jul 30;119(30):17408-17415. doi: 10.1021/acs.jpcc.5b03624. Epub 2015 Jul 15.
2
Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties.
Spectrochim Acta A Mol Biomol Spectrosc. 2018 Feb 15;191:513-520. doi: 10.1016/j.saa.2017.10.047. Epub 2017 Oct 20.
3
Tuning gold nanostar morphology for the SERS detection of uranyl.
J Raman Spectrosc. 2021 Feb;52(2):497-505. doi: 10.1002/jrs.5994. Epub 2020 Sep 21.
6
Intracellular optical probing with gold nanostars.
Nanoscale. 2021 Jan 14;13(2):968-979. doi: 10.1039/d0nr07031a. Epub 2020 Dec 24.
7
Synthesis and optical properties of anisotropic metal nanoparticles.
J Fluoresc. 2004 Jul;14(4):331-41. doi: 10.1023/b:jofl.0000031815.71450.74.
8
Dipole-dipole plasmon interactions in gold-on-polystyrene composites.
J Phys Chem B. 2005 Nov 24;109(46):21516-20. doi: 10.1021/jp0523470.
9
Tuning size and sensing properties in colloidal gold nanostars.
Langmuir. 2010 Sep 21;26(18):14943-50. doi: 10.1021/la102559e.
10
Modified HEPES one-pot synthetic strategy for gold nanostars.
R Soc Open Sci. 2019 Jun 12;6(6):190160. doi: 10.1098/rsos.190160. eCollection 2019 Jun.

引用本文的文献

1
Understanding gold nanoparticles and their attributes in ovarian cancer therapy.
Mol Cancer. 2025 Mar 20;24(1):88. doi: 10.1186/s12943-025-02280-3.
2
Gold Nanoraspberries for Surface-Enhanced Raman Scattering: Synthesis, Optimization, and Characterization.
ACS Omega. 2025 Jan 28;10(5):4588-4598. doi: 10.1021/acsomega.4c08791. eCollection 2025 Feb 11.
3
Effects of Cosolvent on the Intermolecular Interactions between an Analyte and a Gold Nanostar Surface Studied Using SERS.
J Phys Chem C Nanomater Interfaces. 2024 Oct 2;128(41):17543-17551. doi: 10.1021/acs.jpcc.4c04360. eCollection 2024 Oct 17.
4
Gold-Hydrogel Nanocomposites for High-Resolution Laser-Based 3D Printing of Scaffolds with SERS-Sensing Properties.
ACS Appl Bio Mater. 2024 Jul 15;7(7):4497-4509. doi: 10.1021/acsabm.4c00379. Epub 2024 Jun 26.
5
Applications of Gold Nanoparticles in Plasmonic and Nanophotonic Biosensing.
Adv Biochem Eng Biotechnol. 2024;187:185-221. doi: 10.1007/10_2023_237.
7
Feasibility of NAD(P)/NAD(P)H as redox agents in enzymatic plasmonic gold nanostar assays for galactose quantification.
R Soc Open Sci. 2023 Oct 11;10(10):230825. doi: 10.1098/rsos.230825. eCollection 2023 Oct.
8
Post-Assay Chemical Enhancement for Highly Sensitive Lateral Flow Immunoassays: A Critical Review.
Biosensors (Basel). 2023 Sep 1;13(9):866. doi: 10.3390/bios13090866.
9
Modeling Au Nanostar Geometry in Bulk Solutions.
J Phys Chem C Nanomater Interfaces. 2023 Jan 12;127(3):1680-1686. doi: 10.1021/acs.jpcc.2c07520. eCollection 2023 Jan 26.
10
Microfluidic SERS devices: brightening the future of bioanalysis.
Discov Mater. 2022;2(1):12. doi: 10.1007/s43939-022-00033-3. Epub 2022 Dec 15.

本文引用的文献

2
SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 Jan-Feb;7(1):17-33. doi: 10.1002/wnan.1283. Epub 2014 Oct 15.
3
Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types.
Mol Pharm. 2014 Feb 3;11(2):580-7. doi: 10.1021/mp4005657. Epub 2014 Jan 21.
4
Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization.
J Phys Chem C Nanomater Interfaces. 2008;2008(112):18849-18859. doi: 10.1021/jp8054747.
5
Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment.
ACS Nano. 2013 Mar 26;7(3):2068-77. doi: 10.1021/nn304332s. Epub 2013 Feb 12.
6
Direct observation of nanoparticle-cancer cell nucleus interactions.
ACS Nano. 2012 Apr 24;6(4):3318-26. doi: 10.1021/nn300296p. Epub 2012 Mar 22.
7
In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars.
Nanomedicine. 2012 Nov;8(8):1355-63. doi: 10.1016/j.nano.2012.02.005. Epub 2012 Feb 24.
8
Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging.
Nanotechnology. 2012 Feb 24;23(7):075102. doi: 10.1088/0957-4484/23/7/075102. Epub 2012 Jan 20.
9
Quantifying the nanomachinery of the nanoparticle-biomolecule interface.
Small. 2011 Sep 5;7(17):2477-84. doi: 10.1002/smll.201100530. Epub 2011 Jun 21.
10
A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
ACS Appl Mater Interfaces. 2011 Jun;3(6):1873-9. doi: 10.1021/am200057f. Epub 2011 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验