Suppr超能文献

基于模拟平均延迟(AMD)方法的GPU加速实时共聚焦荧光寿命成像显微镜(FLIM)。

GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method.

作者信息

Kim Byungyeon, Park Byungjun, Lee Seungrag, Won Youngjae

机构信息

Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 361-951, South Korea.

Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 361-951, South Korea; These authors contributed equally.

出版信息

Biomed Opt Express. 2016 Nov 14;7(12):5055-5065. doi: 10.1364/BOE.7.005055. eCollection 2016 Dec 1.

Abstract

We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection.

摘要

我们展示了基于模拟平均延迟(AMD)方法的GPU加速实时共聚焦荧光寿命成像显微镜(FLIM)。我们的算法针对各种荧光寿命和光子数进行了验证。对于高达800×800的图像,GPU处理时间比物理扫描时间更快,比单核CPU快149倍以上。在观察玉米维管组织时,我们系统对于200×200像素图像的帧率为13帧/秒。该系统可用于观察动态生物反应、医学诊断和实时工业检测。

相似文献

引用本文的文献

本文引用的文献

5
Wide-field fluorescence lifetime imaging of cancer.癌症的宽场荧光寿命成像
Biomed Opt Express. 2010 Aug 19;1(2):627-640. doi: 10.1364/BOE.1.000627.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验