Suppr超能文献

通过一种新型高色散光纤实现932纳米的超快时间拉伸成像。

Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber.

作者信息

Wei Xiaoming, Kong Cihang, Sy Samuel, Ko Ho, Tsia Kevin K, Wong Kenneth K Y

机构信息

Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

Department of Electronic Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

Biomed Opt Express. 2016 Nov 18;7(12):5208-5217. doi: 10.1364/BOE.7.005208. eCollection 2016 Dec 1.

Abstract

Optical glass fiber has played a key role in the development of modern optical communication and attracted the biotechnology researcher's great attention because of its properties, such as the wide bandwidth, low attenuation and superior flexibility. For ultrafast optical imaging, particularly, it has been utilized to perform MHz time-stretch imaging with diffraction-limited resolutions, which is also known as serial time-encoded amplified microscopy (STEAM). Unfortunately, time-stretch imaging with dispersive fibers has so far mostly been demonstrated at the optical communication window of 1.5 μm due to lack of efficient dispersive optical fibers operating at the shorter wavelengths, particularly at the bio-favorable window, i.e., <1.0 μm. Through fiber-optic engineering, here we demonstrate a 7.6-MHz dual-color time-stretch optical imaging at bio-favorable wavelengths of 932 nm and 466 nm. The sensitivity at such a high speed is experimentally identified in a slow data-streaming manner. To the best of our knowledge, this is the first time that all-optical time-stretch imaging at ultrahigh speed, high sensitivity and high chirping rate (>1 ns/nm) has been demonstrated at a bio-favorable wavelength window through fiber-optic engineering.

摘要

光学玻璃纤维在现代光通信的发展中发挥了关键作用,并因其诸如宽带宽、低衰减和卓越柔韧性等特性而引起了生物技术研究人员的极大关注。特别是对于超快光学成像,它已被用于执行具有衍射极限分辨率的兆赫兹时间拉伸成像,这也被称为串行时间编码放大显微镜(STEAM)。不幸的是,由于缺乏在较短波长(特别是在生物适宜窗口,即<1.0μm)工作的高效色散光纤,到目前为止,使用色散光纤的时间拉伸成像大多在1.5μm的光通信窗口进行演示。通过光纤工程,我们在此展示了在932nm和466nm的生物适宜波长下的7.6兆赫兹双色时间拉伸光学成像。以慢数据流的方式通过实验确定了如此高速下的灵敏度。据我们所知,这是首次通过光纤工程在生物适宜波长窗口展示超高速、高灵敏度和高啁啾率(>1ns/nm)的全光时间拉伸成像。

相似文献

6
7
Ultrafast laser-scanning time-stretch imaging at visible wavelengths.可见波长下的超快激光扫描时间拉伸成像。
Light Sci Appl. 2017 Jan 27;6(1):e16196. doi: 10.1038/lsa.2016.196. eCollection 2017 Jan.
8
Self-healing highly-chirped fiber laser at 1.0 μm.波长为1.0μm的自愈合高啁啾光纤激光器。
Opt Express. 2016 Nov 28;24(24):27577-27586. doi: 10.1364/OE.24.027577.
10
28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging.用于超快定量相位成像的1.0μm波长28MHz扫频光源。
Biomed Opt Express. 2015 Sep 8;6(10):3855-64. doi: 10.1364/BOE.6.003855. eCollection 2015 Oct 1.

本文引用的文献

5
Mode-locked Nd-doped fiber laser at 930  nm.930nm 锁模掺铒光纤激光器。
Opt Lett. 2014 Jan 15;39(2):267-70. doi: 10.1364/OL.39.000267.
9
High-throughput single-microparticle imaging flow analyzer.高通量单细胞成像流式分析仪。
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11630-5. doi: 10.1073/pnas.1204718109. Epub 2012 Jul 2.
10
Performance of serial time-encoded amplified microscope.串行时间编码放大显微镜的性能
Opt Express. 2010 May 10;18(10):10016-28. doi: 10.1364/OE.18.010016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验