Suppr超能文献

区间直觉模糊集的指数运算与聚合算子及其决策方法

Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods.

作者信息

Ye Jun

机构信息

Department of Electrical and Information Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, 312000 Zhejiang Province People's Republic of China.

出版信息

Springerplus. 2016 Sep 5;5(1):1488. doi: 10.1186/s40064-016-3143-z. eCollection 2016.

Abstract

An interval neutrosophic set (INS) is a subclass of a neutrosophic set and a generalization of an interval-valued intuitionistic fuzzy set, and then the characteristics of INS are independently described by the interval numbers of its truth-membership, indeterminacy-membership, and falsity-membership degrees. However, the exponential parameters (weights) of all the existing exponential operational laws of INSs and the corresponding exponential aggregation operators are crisp values in interval neutrosophic decision making problems. As a supplement, this paper firstly introduces new exponential operational laws of INSs, where the bases are crisp values or interval numbers and the exponents are interval neutrosophic numbers (INNs), which are basic elements in INSs. Then, we propose an interval neutrosophic weighted exponential aggregation (INWEA) operator and a dual interval neutrosophic weighted exponential aggregation (DINWEA) operator based on these exponential operational laws and introduce comparative methods based on cosine measure functions for INNs and dual INNs. Further, we develop decision-making methods based on the INWEA and DINWEA operators. Finally, a practical example on the selecting problem of global suppliers is provided to illustrate the applicability and rationality of the proposed methods.

摘要

区间中智集(INS)是中智集的一个子类,也是区间值直觉模糊集的一种推广,其特征由其真隶属度、不确定隶属度和假隶属度的区间数独立描述。然而,在区间中智决策问题中,所有现有的区间中智集指数运算定律及其相应的指数聚合算子的指数参数(权重)都是精确值。作为补充,本文首先引入了区间中智集的新指数运算定律,其中底数为精确值或区间数,指数为区间中智数(INN),区间中智数是区间中智集中的基本元素。然后,基于这些指数运算定律,我们提出了区间中智加权指数聚合(INWEA)算子和对偶区间中智加权指数聚合(DINWEA)算子,并引入了基于INN和对偶INN的余弦测度函数的比较方法。进一步地,我们开发了基于INWEA和DINWEA算子的决策方法。最后,给出了一个关于全球供应商选择问题的实例,以说明所提方法的适用性和合理性。

相似文献

1
Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods.
Springerplus. 2016 Sep 5;5(1):1488. doi: 10.1186/s40064-016-3143-z. eCollection 2016.
2
Interval neutrosophic sets and their application in multicriteria decision making problems.
ScientificWorldJournal. 2014 Feb 17;2014:645953. doi: 10.1155/2014/645953. eCollection 2014.
4
Some aggregation operators of neutrosophic Z-numbers and their multicriteria decision making method.
Complex Intell Systems. 2021;7(1):429-438. doi: 10.1007/s40747-020-00204-w. Epub 2020 Nov 1.
5
Einstein exponential operation laws of spherical fuzzy sets and aggregation operators in decision making.
Multimed Tools Appl. 2023 Apr 12:1-24. doi: 10.1007/s11042-023-14532-9.
6
Linguistic neutrosophic Hamacher aggregation operators and the application in evaluating land reclamation schemes for mines.
PLoS One. 2018 Nov 6;13(11):e0206178. doi: 10.1371/journal.pone.0206178. eCollection 2018.
8
Exponential Entropy for Simplified Neutrosophic Sets and Its Application in Decision Making.
Entropy (Basel). 2018 May 10;20(5):357. doi: 10.3390/e20050357.
9
A Bonferroni mean considering Shapley fuzzy measure under hesitant bipolar-valued neutrosophic set environment for an investment decision.
J Ambient Intell Humaniz Comput. 2023;14(6):6919-6946. doi: 10.1007/s12652-021-03550-w. Epub 2021 Oct 25.

本文引用的文献

1
Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses.
Artif Intell Med. 2015 Mar;63(3):171-9. doi: 10.1016/j.artmed.2014.12.007. Epub 2014 Dec 26.
2
Interval neutrosophic sets and their application in multicriteria decision making problems.
ScientificWorldJournal. 2014 Feb 17;2014:645953. doi: 10.1155/2014/645953. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验