Mohamad Ahmad Qushairi, Khan Ilyas, Ismail Zulkhibri, Shafie Sharidan
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Malaysia.
Basic Engineering Sciences Department, College of Engineering, Majmaah University, P.O. Box 66, Majmaah, 11952 Saudi Arabia.
Springerplus. 2016 Dec 9;5(1):2090. doi: 10.1186/s40064-016-3748-2. eCollection 2016.
Non-coaxial rotation has wide applications in engineering devices, e.g. in food processing such as mixer machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysical flows. Therefore, this study aims to investigate unsteady free convection flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillating vertical plate with constant wall temperature.
The governing equations are modelled by a sudden coincidence of the axes of a disk and the fluid at infinity rotating with uniform angular velocity, together with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The Laplace transform method is used to obtain the exact solutions of the corresponding non-dimensional momentum and energy equations with conditions. Solutions of the velocity for cosine and sine oscillations as well as for temperature fields are obtained and displayed graphically for different values of time ( ), the Grashof number (), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]). Skin friction and the Nusselt number are also evaluated.
The exact solutions are obtained and in limiting cases, the present solutions are found to be identical to the published results. Further, the obtained exact solutions also validated by comparing with results obtained by using Gaver-Stehfest algorithm.
The interested physical property such as velocity, temperature, skin friction and Nusselt number are affected by the embedded parameters time (), the Grashof number (), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]).
非同轴旋转在工程设备中有广泛应用,例如在食品加工中,如带有双轴捏合机的搅拌机和搅拌器;在冷却涡轮叶片、喷气发动机、泵和吸尘器中;在设计热虹吸管以及地球物理流动中。因此,本研究旨在研究由于非同轴旋转以及无穷远处流体在具有恒定壁温的振荡垂直平板上引起的粘性流体非定常自由对流流动。
通过圆盘轴与以均匀角速度旋转的无穷远处流体的突然重合以及初始和边界条件对控制方程进行建模。引入了一些合适的无量纲变量。使用拉普拉斯变换方法在给定条件下获得相应无量纲动量和能量方程的精确解。得到了余弦和正弦振荡的速度解以及温度场解,并针对不同的时间值()、格拉晓夫数()、普朗特数([公式:见原文])和相位角([公式:见原文])以图形方式显示。还评估了表面摩擦力和努塞尔数。
获得了精确解,在极限情况下,发现本解与已发表的结果相同。此外,通过与使用盖弗 - 斯特费斯特算法获得的结果进行比较,验证了所获得的精确解。
感兴趣的物理性质,如速度、温度、表面摩擦力和努塞尔数,受嵌入参数时间()、格拉晓夫数()、普朗特数([公式:见原文])和相位角([公式:见原文])的影响。