Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou 215123, China.
ACS Nano. 2016 Dec 27;10(12):11337-11343. doi: 10.1021/acsnano.6b06580. Epub 2016 Nov 28.
The development of nonprecious metal based electrocatalysts for hydrogen evolution reaction (HER) has received increasing attention over recent years. Previous studies have established MoC as a promising candidate. Nevertheless, its preparation requires high reaction temperature, which more than often causes particle sintering and results in low surface areas. In this study, we show supporting MoC nanoparticles on the three-dimensional scaffold as a possible solution to this challenge and develop a facile two-step preparation method for ∼3 nm MoC nanoparticles uniformly dispersed on carbon microflowers (MoC/NCF) via the self-polymerization of dopamine. The resulting hybrid material possesses large surface areas and a fully open and accessible structure with hierarchical order at different levels. MoO was found to play an important role in inducing the formation of this morphology presumably via its strong chelating interaction with the catechol groups of dopamine. Our electrochemical evaluation demonstrates that MoC/NCF exhibits excellent HER electrocatalytic performance with low onset overpotentials, small Tafel slopes, and excellent cycling stability in both acidic and alkaline solutions.
近年来,非贵金属基电催化剂在析氢反应(HER)中的发展受到了越来越多的关注。先前的研究已经确定了 MoC 是一种很有前途的候选材料。然而,其制备需要较高的反应温度,这往往会导致颗粒烧结,从而导致低的比表面积。在本研究中,我们表明,将 MoC 纳米颗粒负载在三维支架上是解决这一挑战的一种可能方法,并通过多巴胺的自聚合开发了一种简便的两步法制备方法,在碳微花(MoC/NCF)上均匀分散约 3nm 的 MoC 纳米颗粒。所得的混合材料具有大的比表面积和完全开放且可及的结构,在不同层次上具有分级有序。MoO 被发现通过其与多巴胺的邻苯二酚基团的强螯合相互作用在诱导这种形态的形成中起着重要作用。我们的电化学评估表明,MoC/NCF 在酸性和碱性溶液中均表现出优异的 HER 电催化性能,具有低的起始过电位、小的塔菲尔斜率和优异的循环稳定性。