Institut de Science et d'Ingénierie Supramoléculaires (ISIS) and International Center for Frontier Research in Chemistry (icFRC), Université de Strasbourg and Centre National de la Recherche Scientifique (CNRS) , 8 Allée Gaspard Monge, 67000 Strasbourg, France.
Department of Physics and Astronomy (CMMP Group) and London Centre for Nanotechnology, University College London , Gower Street, London WC1E 6BT, United Kingdom.
ACS Nano. 2016 Dec 27;10(12):10768-10777. doi: 10.1021/acsnano.6b03823. Epub 2016 Nov 21.
Ultrasound-induced liquid-phase exfoliation (UILPE) is an established method to produce single- (SLG) and few-layer (FLG) graphene nanosheets starting from graphite as a precursor. In this paper we investigate the effect of the ultrasonication power in the UILPE process carried out in either N-methyl-2-pyrrolidone (NMP) or ortho-dichlorobenzene (o-DCB). Our experimental results reveal that while the SLGs/FLGs concentration of the NMP dispersions is independent of the power of the ultrasonic bath during the UILPE process, in o-DCB it decreases as the ultrasonication power increases. Moreover, the ultrasonication power has a strong influence on the lateral size of the exfoliated SLGs/FLGs nanosheets in o-DCB. In particular, when UILPE is carried out at ∼600 W, we obtain dispersions composed of graphene nanosheets with a lateral size of 180 nm, whereas at higher power (∼1000 W) we produce graphene nanodots (GNDs) with an average diameter of ∼17 nm. The latter nanostructures exhibit a strong and almost excitation-independent photoluminescence emission in the UV/deep-blue region of the electromagnetic spectrum arising from the GNDs' intrinsic states and a less intense (and strongly excitation wavelength dependent) emission in the green/red region attributed to defect states. Notably, we also observe visible emission with near-infrared excitation at 850 and 900 nm, a fingerprint of the presence of up-conversion processes. Overall, our results highlight the crucial importance of the solvent choice for the UILPE process, which under controlled experimental conditions allows the fine-tuning of the morphological properties, such as lateral size and thickness, of the graphene nanosheets toward the realization of luminescent GNDs.
超声液相剥离(UILPE)是一种将石墨作为前体制备单层(SLG)和少层(FLG)石墨烯纳米片的成熟方法。在本文中,我们研究了超声处理功率对 N-甲基-2-吡咯烷酮(NMP)或邻二氯苯(o-DCB)中 UILPE 过程的影响。我们的实验结果表明,虽然 NMP 分散体中的 SLG/FLG 浓度与 UILPE 过程中超声浴的功率无关,但在 o-DCB 中,随着超声功率的增加而降低。此外,超声功率对 o-DCB 中剥离的 SLG/FLG 纳米片的横向尺寸有很强的影响。特别是,当 UILPE 在约 600 W 下进行时,我们得到了由横向尺寸为 180nm 的石墨烯纳米片组成的分散体,而在更高的功率(约 1000 W)下,我们得到了平均直径约为 17nm 的石墨烯纳米点(GNDs)。后者的纳米结构在电磁光谱的 UV/深蓝光区域表现出强烈且几乎与激发无关的光致发光发射,这源于 GNDs 的本征态,而在绿光/红光区域则表现出较弱(且强烈依赖于激发波长)的发射,归因于缺陷态。值得注意的是,我们还观察到近红外 850nm 和 900nm 激发下的可见发射,这是上转换过程存在的指纹。总的来说,我们的结果强调了溶剂选择对 UILPE 过程的重要性,在控制实验条件下,该过程可以微调石墨烯纳米片的形态特性,例如横向尺寸和厚度,以实现发光 GNDs。