Department of Physics, Wesleyan University , Middletown, Connecticut 06459, United States.
Department of Molecular Biology & Biochemistry, Wesleyan University , Middletown, Connecticut 06459, United States.
ACS Nano. 2016 Dec 27;10(12):10960-10965. doi: 10.1021/acsnano.6b05683. Epub 2016 Dec 7.
Polymer-nanoparticle (NP) interfacial interactions are expected to strongly influence the properties of nanocomposites, but surprisingly, experiments often report small or no changes in the glass transition temperature, T. To understand this paradoxical situation, we simulate nanocomposites over a broad range of polymer-NP interaction strengths, ε. When ε is stronger than the polymer-polymer interaction, a distinct relaxation that is slower than the main α-relaxation emerges, arising from an adsorbed "bound" polymer layer near the NP surface. This bound layer "cloaks" the NPs, so that the dynamics of the matrix polymer are largely unaffected. Consequently, T defined from the temperature dependence of the routinely measured thermodynamics or the polymer matrix relaxation is nearly independent of ε, in accord with many experiments. Apparently, quasi-thermodynamic measurements do not reliably reflect dynamical changes in the bound layer, which alter the overall composite dynamics. These findings clarify the relation between quasi-thermodynamic T measurements and nanocomposite dynamics, and should also apply to thin polymer films.
聚合物-纳米粒子(NP)界面相互作用预计会强烈影响纳米复合材料的性能,但令人惊讶的是,实验往往报告玻璃化转变温度 T 几乎没有变化或只有微小变化。为了理解这种矛盾的情况,我们模拟了具有广泛聚合物-NP 相互作用强度 ε 的纳米复合材料。当 ε 强于聚合物-聚合物相互作用时,会出现比主要α松弛慢得多的明显弛豫,这是由 NP 表面附近的吸附“束缚”聚合物层引起的。这个束缚层“掩盖”了 NPs,因此基质聚合物的动力学基本不受影响。因此,从通常测量的热力学或聚合物基质弛豫的温度依赖性定义的 T 几乎与 ε 无关,这与许多实验结果一致。显然,准热力学测量不能可靠地反映束缚层中的动力学变化,而这些变化会改变整体复合材料的动力学。这些发现阐明了准热力学 T 测量与纳米复合材料动力学之间的关系,并且应该也适用于聚合物薄膜。