Suppr超能文献

在致病性细菌类鼻疽伯克霍尔德菌(引起类鼻疽病的病原体)基因组中鉴定出的γ-碳酸酐酶的磺胺抑制谱。

Sulfonamide inhibition profile of the γ-carbonic anhydrase identified in the genome of the pathogenic bacterium Burkholderia pseudomallei the etiological agent responsible of melioidosis.

作者信息

Del Prete Sonia, Vullo Daniela, Di Fonzo Pietro, Osman Sameh M, AlOthman Zeid, Donald William A, Supuran Claudiu T, Capasso Clemente

机构信息

Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy.

Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.

出版信息

Bioorg Med Chem Lett. 2017 Feb 1;27(3):490-495. doi: 10.1016/j.bmcl.2016.12.035. Epub 2016 Dec 12.

Abstract

A new γ-carbonic anhydrase (CA, EC 4.1.1.1) was cloned and characterized kinetically in the genome of the bacterial pathogen Burkholderia pseudomallei, the etiological agent of melioidosis, an endemic disease of tropical and sub-tropical regions of the world. The catalytic activity of this new enzyme, BpsCAγ, is significant with a k of 5.3×10s and k/K of 2.5×10M×s for the physiologic CO hydration reaction. The inhibition constant value for this enzyme for 39 sulfonamide inhibitors was obtained. Acetazolamide, benzolamide and metanilamide were the most effective (Ks of 149-653nM) inhibitors of BpsCAγ activity, whereas other sulfonamides/sulfamates such as ethoxzolamide, topiramate, sulpiride, indisulam, sulthiame and saccharin were active in the micromolar range (Ks of 1.27-9.56μM). As Burkholderia pseudomallei is resistant to many classical antibiotics, identifying compounds that interfere with crucial enzymes in the B. pseudomallei life cycle may lead to antibiotics with novel mechanisms of action.

摘要

在世界热带和亚热带地区的地方性疾病类鼻疽的病原体——细菌性病原体伯克霍尔德菌的基因组中,克隆了一种新的γ-碳酸酐酶(CA,EC 4.1.1.1)并对其进行了动力学表征。这种新酶BpsCAγ的催化活性显著,对于生理CO水合反应,其k为5.3×10s,k/K为2.5×10M×s。获得了该酶对39种磺胺类抑制剂的抑制常数。乙酰唑胺、苯甲酰胺和间硝基苯磺酰胺是BpsCAγ活性最有效的抑制剂(Ks为149 - 653 nM),而其他磺胺类/氨基磺酸盐,如乙氧唑胺、托吡酯、舒必利、茚地那韦、舒噻美和糖精在微摩尔范围内具有活性(Ks为1.27 - 9.56μM)。由于伯克霍尔德菌对许多经典抗生素具有抗性,鉴定干扰伯克霍尔德菌生命周期中关键酶的化合物可能会产生具有新作用机制的抗生素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验