Suppr超能文献

通过增强特征策略对物种特异性丙二酰化位点进行计算预测。

Computational prediction of species-specific malonylation sites via enhanced characteristic strategy.

作者信息

Wang Li-Na, Shi Shao-Ping, Xu Hao-Dong, Wen Ping-Ping, Qiu Jian-Ding

机构信息

Department of Chemistry, Nanchang University, Nanchang, China.

Department of sciences, Nanchang Institute of Technology, Nanchang, China.

出版信息

Bioinformatics. 2017 May 15;33(10):1457-1463. doi: 10.1093/bioinformatics/btw755.

Abstract

MOTIVATION

Protein malonylation is a novel post-translational modification (PTM) which orchestrates a variety of biological processes. Annotation of malonylation in proteomics is the first-crucial step to decipher its physiological roles which are implicated in the pathological processes. Comparing with the expensive and laborious experimental research, computational prediction can provide an accurate and effective approach to the identification of many types of PTMs sites. However, there is still no online predictor for lysine malonylation.

RESULTS

By searching from literature and database, a well-prepared up-to-data benchmark datasets were collected in multiple organisms. Data analyses demonstrated that different organisms were preferentially involved in different biological processes and pathways. Meanwhile, unique sequence preferences were observed for each organism. Thus, a novel malonylation site online prediction tool, called MaloPred, which can predict malonylation for three species, was developed by integrating various informative features and via an enhanced feature strategy. On the independent test datasets, AUC (area under the receiver operating characteristic curves) scores are obtained as 0.755, 0.827 and 0.871 for Escherichia coli ( E.coli ), Mus musculus ( M.musculus ) and Homo sapiens ( H.sapiens ), respectively. The satisfying results suggest that MaloPred can provide more instructive guidance for further experimental investigation of protein malonylation.

AVAILABILITY AND IMPLEMENTATION

http://bioinfo.ncu.edu.cn/MaloPred.aspx .

CONTACT

jdqiu@ncu.edu.cn.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

蛋白质丙二酰化是一种新型的翻译后修饰(PTM),它协调多种生物过程。蛋白质组学中丙二酰化的注释是解读其在病理过程中所涉及生理作用的关键第一步。与昂贵且费力的实验研究相比,计算预测可为多种类型的PTM位点识别提供准确有效的方法。然而,目前仍没有用于赖氨酸丙二酰化的在线预测工具。

结果

通过从文献和数据库中搜索,收集了多个生物体中精心准备的最新基准数据集。数据分析表明,不同生物体优先参与不同的生物过程和途径。同时,观察到每个生物体都有独特的序列偏好。因此,通过整合各种信息特征并采用增强特征策略,开发了一种名为MaloPred的新型丙二酰化位点在线预测工具,它可以预测三种物种的丙二酰化。在独立测试数据集上,大肠杆菌(E.coli)、小家鼠(M.musculus)和智人(H.sapiens)的AUC(受试者工作特征曲线下面积)得分分别为0.755、0.827和0.871。令人满意的结果表明,MaloPred可为蛋白质丙二酰化的进一步实验研究提供更具指导意义的指导。

可用性和实现方式

http://bioinfo.ncu.edu.cn/MaloPred.aspx

联系方式

jdqiu@ncu.edu.cn

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验