School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology , Beijing 100081, China.
Collaborative Innovation Center of Electric Vehicles in Beijing , Beijing 100081, China.
ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1516-1523. doi: 10.1021/acsami.6b13229. Epub 2017 Jan 6.
In this study, a hard-templating route was developed to synthesize a 3D reticular LiNiMnO cathode material using ordered mesoporous silica as the hard template. The synthesized 3D reticular LiNiMnO microparticles consisted of two interlaced 3D nanonetworks and a mesopore channel system. When used as the cathode material in a lithium-ion battery, the as-synthesized 3D reticular LiNiMnO exhibited remarkably enhanced electrochemical performance, namely, superior rate capability and better cycling stability than those of its bulk counterpart. Specifically, a high discharge capacity of 195.6 mA h g at 1 C with 95.6% capacity retention after 50 cycles was achieved with the 3D reticular LiNiMnO. A high discharge capacity of 135.7 mA h g even at a high current of 1000 mA g was also obtained. This excellent electrochemical performance of the 3D reticular LiNiMnO is attributed to its designed structure, which provided nanoscale lithium pathways, large specific surface area, good thermal and mechanical stability, and easy access to the material center.
在这项研究中,采用硬模板法合成了一种 3D 网状 LiNiMnO 正极材料,使用有序介孔硅作为硬模板。合成的 3D 网状 LiNiMnO 微米颗粒由两个交错的 3D 纳米网络和介孔通道系统组成。将其作为锂离子电池的正极材料时,所合成的 3D 网状 LiNiMnO 表现出显著增强的电化学性能,即具有优异的倍率性能和更好的循环稳定性,优于其块状对应物。具体而言,3D 网状 LiNiMnO 在 1C 时具有 195.6 mA h g 的高放电容量,经过 50 次循环后,容量保持率为 95.6%。即使在高电流 1000 mA g 下,也获得了 135.7 mA h g 的高放电容量。3D 网状 LiNiMnO 的优异电化学性能归因于其设计的结构,提供了纳米级的锂离子通道、大的比表面积、良好的热稳定性和机械稳定性,以及易于到达材料中心。