IEEE Trans Image Process. 2017 Mar;26(3):1143-1157. doi: 10.1109/TIP.2016.2642790. Epub 2016 Dec 21.
High dynamic range (HDR) image synthesis from multiple low dynamic range exposures continues to be actively researched. The extension to HDR video synthesis is a topic of significant current interest due to potential cost benefits. For HDR video, a stiff practical challenge presents itself in the form of accurate correspondence estimation of objects between video frames. In particular, loss of data resulting from poor exposures and varying intensity makes conventional optical flow methods highly inaccurate. We avoid exact correspondence estimation by proposing a statistical approach via maximum a posterior estimation, and under appropriate statistical assumptions and choice of priors and models, we reduce it to an optimization problem of solving for the foreground and background of the target frame. We obtain the background through rank minimization and estimate the foreground via a novel multiscale adaptive kernel regression technique, which implicitly captures local structure and temporal motion by solving an unconstrained optimization problem. Extensive experimental results on both real and synthetic data sets demonstrate that our algorithm is more capable of delivering high-quality HDR videos than current state-of-the-art methods, under both subjective and objective assessments. Furthermore, a thorough complexity analysis reveals that our algorithm achieves better complexity-performance tradeoff than conventional methods.
多幅低动态范围曝光的高动态范围(HDR)图像合成仍然是一个活跃的研究领域。由于潜在的成本效益,将其扩展到 HDR 视频合成是当前一个非常关注的话题。对于 HDR 视频,由于曝光不足和强度变化导致的数据丢失,准确估计视频帧之间的对象对应关系是一个严峻的实际挑战。我们通过最大后验估计提出了一种基于统计的方法来避免精确的对应估计,并且在适当的统计假设、先验和模型选择下,我们将其简化为求解目标帧的前景和背景的优化问题。我们通过秩最小化获得背景,并通过一种新颖的多尺度自适应核回归技术来估计前景,该技术通过解决无约束优化问题来隐式捕获局部结构和时间运动。在真实和合成数据集上的广泛实验结果表明,与当前最先进的方法相比,我们的算法在主观和客观评估下都能够生成更高质量的 HDR 视频。此外,深入的复杂度分析表明,与传统方法相比,我们的算法实现了更好的复杂度性能权衡。