Suppr超能文献

一种由液态燃料和基于丙烯酸盐的凝胶聚合物电解质实现双工作模式的锂/多硫化物电池。

A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

机构信息

Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong.

Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China.

出版信息

ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2526-2534. doi: 10.1021/acsami.6b14311. Epub 2017 Jan 9.

Abstract

The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm) present superior cycling stability (727.4 mAh g after 500 cycles at 0.2 C) and high rate capability (814 mAh g at 2 C) and power density (∼10 mW cm), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.

摘要

当前 Li-S 电池的固态硫阴极中,硫的面载量低导致密度低,这是阻碍该类型电池发展的一个问题。多硫化物作为一种可回收的液体燃料,已被证明可以提高电池的能量密度和功率密度。然而,这种锂(Li)/多硫化物电池存在一个关键障碍,即穿梭效应,即在固态硫阴极的常规 Li-S 电池中,多硫化物和侧沉积在 Li 阳极上的交叉更为严重。在这项工作中,我们成功地将基于丙烯酸酯的凝胶聚合物电解质(GPE)应用于 Li/多硫化物系统。GPE 层可以有效地阻止多硫化物的有害扩散,并防止 Li 金属发生侧钝化反应。采用 2 M 电解液(面载硫量为 6.4mg cm)的静态电池具有优异的循环稳定性(在 0.2 C 下循环 500 次后为 727.4 mAh g)和高倍率性能(在 2 C 时为 814 mAh g)和功率密度(约 10 mW cm),对于移动设备还具有可更换和封装的优点。在阴极流动模式下,采用外部储罐提供电解液的 Li/多硫化物系统具有进一步提高的功率密度(约 69 mW cm)和稳定的循环性能。这种新型简单的 Li/多硫化物系统代表了未来电源用高能量密度硫基电池的重大进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验