Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong.
Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China.
ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2526-2534. doi: 10.1021/acsami.6b14311. Epub 2017 Jan 9.
The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm) present superior cycling stability (727.4 mAh g after 500 cycles at 0.2 C) and high rate capability (814 mAh g at 2 C) and power density (∼10 mW cm), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.
当前 Li-S 电池的固态硫阴极中,硫的面载量低导致密度低,这是阻碍该类型电池发展的一个问题。多硫化物作为一种可回收的液体燃料,已被证明可以提高电池的能量密度和功率密度。然而,这种锂(Li)/多硫化物电池存在一个关键障碍,即穿梭效应,即在固态硫阴极的常规 Li-S 电池中,多硫化物和侧沉积在 Li 阳极上的交叉更为严重。在这项工作中,我们成功地将基于丙烯酸酯的凝胶聚合物电解质(GPE)应用于 Li/多硫化物系统。GPE 层可以有效地阻止多硫化物的有害扩散,并防止 Li 金属发生侧钝化反应。采用 2 M 电解液(面载硫量为 6.4mg cm)的静态电池具有优异的循环稳定性(在 0.2 C 下循环 500 次后为 727.4 mAh g)和高倍率性能(在 2 C 时为 814 mAh g)和功率密度(约 10 mW cm),对于移动设备还具有可更换和封装的优点。在阴极流动模式下,采用外部储罐提供电解液的 Li/多硫化物系统具有进一步提高的功率密度(约 69 mW cm)和稳定的循环性能。这种新型简单的 Li/多硫化物系统代表了未来电源用高能量密度硫基电池的重大进展。