Smith Duncan D, Sperry John S, Adler Frederick R
Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
Ann Bot. 2017 Feb;119(3):447-456. doi: 10.1093/aob/mcw231. Epub 2016 Dec 27.
Corner's rule states that thicker twigs bear larger leaves. The exact nature of this relationship and why it should occur has been the subject of numerous studies. It is obvious that thicker twigs should support greater total leaf area ([Formula: see text]) for hydraulical and mechanical reasons. But it is not obvious why mean leaf size ([Formula: see text]) should scale positively with [Formula: see text] We asked what this scaling relationship is within species and how variable it is across species. We then developed a model to explain why these relationships exist.
To minimize potential sources of variability, we compared twig properties from six co-occurring and functionally similar species: Acer grandidentatum, Amelanchier alnifolia, Betula occidentalis, Cornus sericea, Populus fremontii and Symphoricarpos oreophilus We modelled the economics of leaf display, weighing the benefit from light absorption against the cost of leaf tissue, to predict the optimal [Formula: see text] combinations under different canopy openings.
We observed a common [Formula: see text] by [Formula: see text] exponent of 0.6, meaning that [Formula: see text]and leaf number on twigs increased in a specific coordination. Common scaling exponents were not supported for relationships between any other measured twig properties. The model consistently predicted positive [Formula: see text] by [Formula: see text] scaling when twigs optimally filled canopy openings. The observed 0·6 exponent was predicted when self-shading decreased with larger canopy opening.
Our results suggest Corner's rule may be better understood when recast as positive [Formula: see text] by [Formula: see text] scaling. Our model provides a tentative explanation of observed [Formula: see text] by [Formula: see text] scaling and suggests different scaling may exist in different environments.
科纳法则指出,较粗的小枝着生较大的叶片。这种关系的确切性质以及为何会出现这种关系一直是众多研究的主题。显然,出于水力和机械方面的原因,较粗的小枝应该能够支撑更大的总叶面积([公式:见正文])。但平均叶大小([公式:见正文])为何会与[公式:见正文]呈正相关并不明显。我们探究了这种比例关系在物种内部是怎样的,以及在不同物种间的变化程度如何。然后我们构建了一个模型来解释为何会存在这些关系。
为了尽量减少潜在的变异性来源,我们比较了六种同域分布且功能相似的物种的小枝特性:大齿槭、桤叶唐棣、西方桦、绢毛梾木、弗氏杨和山茱萸叶雪果。我们对叶片展示的经济学原理进行建模,权衡光吸收的益处与叶片组织的成本,以预测不同树冠开度下的最佳[公式:见正文]组合。
我们观察到一个常见的[公式:见正文]与[公式:见正文]的指数为0.6,这意味着[公式:见正文]和小枝上的叶片数量以特定的协同方式增加。其他任何测量的小枝特性之间的关系都不支持常见的比例指数。当小枝最佳地填充树冠开度时,该模型一致预测[公式:见正文]与[公式:见正文]呈正相关。当随着树冠开度增大自遮荫减少时,预测的指数为观察到的0.6。
我们的结果表明,当将科纳法则重新表述为[公式:见正文]与[公式:见正文]呈正相关时,可能会更好地理解它。我们的模型对观察到的[公式:见正文]与[公式:见正文]的比例关系提供了一个初步解释,并表明在不同环境中可能存在不同的比例关系。