Chiang Wei-Chieh, Chan Priscilla, Wissinger Bernd, Vincent Ajoy, Skorczyk-Werner Anna, Krawczyński Maciej R, Kaufman Randal J, Tsang Stephen H, Héon Elise, Kohl Susanne, Lin Jonathan H
Department of Pathology, University of California, San Diego, La Jolla, CA 92093.
Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany.
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):400-405. doi: 10.1073/pnas.1606387114. Epub 2016 Dec 27.
Achromatopsia is an autosomal recessive disorder characterized by cone photoreceptor dysfunction. We recently identified activating transcription factor 6 (ATF6) as a genetic cause of achromatopsia. ATF6 is a key regulator of the unfolded protein response. In response to endoplasmic reticulum (ER) stress, ATF6 migrates from the ER to Golgi to undergo regulated intramembrane proteolysis to release a cytosolic domain containing a basic leucine zipper (bZIP) transcriptional activator. The cleaved ATF6 fragment migrates to the nucleus to transcriptionally up-regulate protein-folding enzymes and chaperones. ATF6 mutations in patients with achromatopsia include missense, nonsense, splice site, and single-nucleotide deletion or duplication changes found across the entire gene. Here, we comprehensively tested the function of achromatopsia-associated ATF6 mutations and found that they group into three distinct molecular pathomechanisms: class 1 ATF6 mutants show impaired ER-to-Golgi trafficking and diminished regulated intramembrane proteolysis and transcriptional activity; class 2 ATF6 mutants bear the entire ATF6 cytosolic domain with fully intact transcriptional activity and constitutive induction of downstream target genes, even in the absence of ER stress; and class 3 ATF6 mutants have complete loss of transcriptional activity because of absent or defective bZIP domains. Primary fibroblasts from patients with class 1 or class 3 ATF6 mutations show increased cell death in response to ER stress. Our findings reveal that human ATF6 mutations interrupt distinct sequential steps of the ATF6 activation mechanism. We suggest that increased susceptibility to ER stress-induced damage during retinal development underlies the pathology of achromatopsia in patients with ATF6 mutations.
色盲是一种常染色体隐性疾病,其特征为视锥光感受器功能障碍。我们最近鉴定出激活转录因子6(ATF6)是色盲的一个遗传病因。ATF6是未折叠蛋白反应的关键调节因子。在内质网(ER)应激反应中,ATF6从内质网迁移至高尔基体,进行受调控的膜内蛋白水解,以释放一个含有碱性亮氨酸拉链(bZIP)转录激活因子的胞质结构域。裂解后的ATF6片段迁移至细胞核,转录上调蛋白折叠酶和伴侣蛋白。色盲患者中的ATF6突变包括错义、无义、剪接位点以及在整个基因中发现的单核苷酸缺失或重复变化。在此,我们全面测试了与色盲相关的ATF6突变的功能,发现它们可分为三种不同的分子致病机制:1类ATF6突变体显示内质网到高尔基体的转运受损,受调控的膜内蛋白水解和转录活性减弱;2类ATF6突变体携带完整的ATF6胞质结构域,具有完全完整的转录活性,且即使在没有内质网应激的情况下也能组成性诱导下游靶基因;3类ATF6突变体由于bZIP结构域缺失或有缺陷而完全丧失转录活性。来自1类或3类ATF6突变患者的原代成纤维细胞在内质网应激反应中显示细胞死亡增加。我们的研究结果表明,人类ATF6突变会中断ATF6激活机制中不同的连续步骤。我们认为,在视网膜发育过程中对内质网应激诱导损伤的易感性增加是ATF6突变患者色盲病理的基础。