Stavert Jamie R, Liñán-Cembrano Gustavo, Beggs Jacqueline R, Howlett Brad G, Pattemore David E, Bartomeus Ignasi
Centre for Biodiversity and Biosecurity, School of Biological Sciences, The University of Auckland , Auckland , New Zealand.
Instituto de Microelectrónica de Sevilla CSIC/Universidad de Sevilla , Sevilla , Spain.
PeerJ. 2016 Dec 21;4:e2779. doi: 10.7717/peerj.2779. eCollection 2016.
Functional traits are the primary biotic component driving organism influence on ecosystem functions; in consequence, traits are widely used in ecological research. However, most animal trait-based studies use easy-to-measure characteristics of species that are at best only weakly associated with functions. Animal-mediated pollination is a key ecosystem function and is likely to be influenced by pollinator traits, but to date no one has identified functional traits that are simple to measure and have good predictive power.
Here, we show that a simple, easy to measure trait (hairiness) can predict pollinator effectiveness with high accuracy. We used a novel image analysis method to calculate entropy values for insect body surfaces as a measure of hairiness. We evaluated the power of our method for predicting pollinator effectiveness by regressing pollinator hairiness (entropy) against single visit pollen deposition (SVD) and pollen loads on insects. We used linear models and AIC model selection to determine which body regions were the best predictors of SVD and pollen load.
We found that hairiness can be used as a robust proxy of SVD. The best models for predicting SVD for the flower species and were hairiness on the face and thorax as predictors ( = 0.98 and 0.91 respectively). The best model for predicting pollen load for . was hairiness on the face ( = 0.81).
We suggest that the match between pollinator body region hairiness and plant reproductive structure morphology is a powerful predictor of pollinator effectiveness. We show that pollinator hairiness is strongly linked to pollination-an important ecosystem function, and provide a rigorous and time-efficient method for measuring hairiness. Identifying and accurately measuring key traits that drive ecosystem processes is critical as global change increasingly alters ecological communities, and subsequently, ecosystem functions worldwide.
功能性状是驱动生物对生态系统功能产生影响的主要生物成分;因此,性状在生态学研究中被广泛应用。然而,大多数基于动物性状的研究使用的是物种易于测量的特征,而这些特征与功能的关联充其量只是微弱的。动物介导的授粉是一项关键的生态系统功能,很可能受到传粉者性状的影响,但迄今为止,还没有人确定出易于测量且具有良好预测能力的功能性状。
在此,我们表明一个简单、易于测量的性状(多毛程度)能够高精度地预测传粉者的有效性。我们使用一种新颖的图像分析方法来计算昆虫体表的熵值,以此作为多毛程度的度量。我们通过将传粉者的多毛程度(熵)与单次访花的花粉沉积量(SVD)以及昆虫身上的花粉负载量进行回归分析,来评估我们的方法预测传粉者有效性的能力。我们使用线性模型和AIC模型选择来确定哪些身体部位是SVD和花粉负载量的最佳预测指标。
我们发现多毛程度可以用作SVD的可靠替代指标。预测花卉物种 和 的SVD的最佳模型是以面部和胸部的多毛程度作为预测指标(分别为 = 0.98和0.91)。预测 的花粉负载量的最佳模型是面部的多毛程度( = 0.81)。
我们认为传粉者身体部位的多毛程度与植物生殖结构形态之间的匹配是传粉者有效性的有力预测指标。我们表明传粉者的多毛程度与授粉这一重要的生态系统功能紧密相关,并提供了一种严谨且高效的多毛程度测量方法。随着全球变化日益改变生态群落以及随后全球范围内的生态系统功能,识别并准确测量驱动生态系统过程的关键性状至关重要。