Suppr超能文献

快速H-DROP:H-DROP的30倍加速版本,用于基于支持向量机的螺旋结构域连接子的交互式预测。

Fast H-DROP: A thirty times accelerated version of H-DROP for interactive SVM-based prediction of helical domain linkers.

作者信息

Richa Tambi, Ide Soichiro, Suzuki Ryosuke, Ebina Teppei, Kuroda Yutaka

机构信息

Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 12-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan.

Department of Physiology, Graduate school of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

出版信息

J Comput Aided Mol Des. 2017 Feb;31(2):237-244. doi: 10.1007/s10822-016-9999-8. Epub 2016 Dec 27.

Abstract

Efficient and rapid prediction of domain regions from amino acid sequence information alone is often required for swift structural and functional characterization of large multi-domain proteins. Here we introduce Fast H-DROP, a thirty times accelerated version of our previously reported H-DROP (Helical Domain linker pRediction using OPtimal features), which is unique in specifically predicting helical domain linkers (boundaries). Fast H-DROP, analogously to H-DROP, uses optimum features selected from a set of 3000 ones by combining a random forest and a stepwise feature selection protocol. We reduced the computational time from 8.5 min per sequence in H-DROP to 14 s per sequence in Fast H-DROP on an 8 Xeon processor Linux server by using SWISS-PROT instead of Genbank non-redundant (nr) database for generating the PSSMs. The sensitivity and precision of Fast H-DROP assessed by cross-validation were 33.7 and 36.2%, which were merely ~2% lower than that of H-DROP. The reduced computational time of Fast H-DROP, without affecting prediction performances, makes it more interactive and user-friendly. Fast H-DROP and H-DROP are freely available from http://domserv.lab.tuat.ac.jp/ .

摘要

仅根据氨基酸序列信息高效快速地预测结构域区域,对于大型多结构域蛋白质的快速结构和功能表征通常是必需的。在此,我们介绍Fast H-DROP,它是我们之前报道的H-DROP(使用最优特征预测螺旋结构域连接子)的加速30倍版本,其独特之处在于专门预测螺旋结构域连接子(边界)。与H-DROP类似,Fast H-DROP通过结合随机森林和逐步特征选择协议,使用从3000个特征中选出的最优特征。通过使用SWISS-PROT而非Genbank非冗余(nr)数据库来生成位置特异性得分矩阵(PSSM),我们在8个至强处理器的Linux服务器上,将计算时间从H-DROP中每个序列8.5分钟减少到Fast H-DROP中的每个序列14秒。通过交叉验证评估,Fast H-DROP的灵敏度和精确率分别为33.7%和36.2%,仅比H-DROP低约2%。Fast H-DROP在不影响预测性能的情况下减少了计算时间,使其更具交互性和用户友好性。Fast H-DROP和H-DROP可从http://domserv.lab.tuat.ac.jp/免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验