Suppr超能文献

基于支持向量回归的机器学习平台的开发及其在氨基糖苷类衍生聚阳离子转基因表达活性建模中的应用。

Development of a Web-Enabled SVR-Based Machine Learning Platform and its Application on Modeling Transgene Expression Activity of Aminoglycoside-Derived Polycations.

作者信息

Zhen Zhuo, Potta Thrimoorthy, Lanzillo Nicholas A, Rege Kaushal, Breneman Curt M

机构信息

Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.

Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, United States.

出版信息

Comb Chem High Throughput Screen. 2017;20(1):41-55. doi: 10.2174/1386207319666161228124214.

Abstract

OBJECTIVE

Support Vector Regression (SVR) has become increasingly popular in cheminformatics modeling. As a result, SVR-based machine learning algorithms, including Fuzzy-SVR and Least Square-SVR (LS-SVR) have been developed and applied in various research areas. However, at present, few downloadable packages or public-domain software are available for these algorithms. To address this need, we developed the Support vector regression-based Online Learning Equipment (SOLE) web tool (available at http://reccr.chem.rpi.edu/SOLE/index.html) as an online learning system to support predictive cheminformatics and materials informatics studies.

RESULTS

In this work, we employed the SOLE system to model transgene expression efficacy of polymers obtained from aminoglycoside antibiotics, which allowed the results of several modeling approaches to be easily compared. All models had test set r2 of 0.96-0.98 and test set R2 of 0.79-0.84. Y-scrambling test showed the models were stable and not over-fitted.

CONCLUSION

SOLE has a user-friendly interface and includes routine elements of performing QSAR/QSPR studies that can be applied in various research areas. It utilizes rational and sophisticated feature selection, model selection and model evaluation processes.

摘要

目的

支持向量回归(SVR)在化学信息学建模中越来越受欢迎。因此,基于SVR的机器学习算法,包括模糊支持向量回归(Fuzzy-SVR)和最小二乘支持向量回归(LS-SVR)已被开发并应用于各个研究领域。然而,目前这些算法几乎没有可下载的软件包或公共领域软件。为满足这一需求,我们开发了基于支持向量回归的在线学习工具(SOLE)网络工具(可在http://reccr.chem.rpi.edu/SOLE/index.html获取),作为一个在线学习系统,以支持预测化学信息学和材料信息学研究。

结果

在这项工作中,我们使用SOLE系统对从氨基糖苷类抗生素获得的聚合物的转基因表达效率进行建模,这使得几种建模方法的结果能够轻松比较。所有模型的测试集r2为0.96 - 0.98,测试集R2为0.79 - 0.84。Y-随机化测试表明模型稳定且未过度拟合。

结论

SOLE具有用户友好的界面,并包括进行QSAR/QSPR研究的常规要素,可应用于各个研究领域。它利用了合理且复杂的特征选择、模型选择和模型评估过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验