Suppr超能文献

利用最小二乘支持向量回归和弹性反向传播神经网络对研磨过程中的粒径进行在线监测和控制。

Online monitoring and control of particle size in the grinding process using least square support vector regression and resilient back propagation neural network.

机构信息

Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.

出版信息

ISA Trans. 2015 May;56:206-21. doi: 10.1016/j.isatra.2014.11.011. Epub 2014 Dec 17.

Abstract

Particle size soft sensing in cement mills will be largely helpful in maintaining desired cement fineness or Blaine. Despite the growing use of vertical roller mills (VRM) for clinker grinding, very few research work is available on VRM modeling. This article reports the design of three types of feed forward neural network models and least square support vector regression (LS-SVR) model of a VRM for online monitoring of cement fineness based on mill data collected from a cement plant. In the data pre-processing step, a comparative study of the various outlier detection algorithms has been performed. Subsequently, for model development, the advantage of algorithm based data splitting over random selection is presented. The training data set obtained by use of Kennard-Stone maximal intra distance criterion (CADEX algorithm) was used for development of LS-SVR, back propagation neural network, radial basis function neural network and generalized regression neural network models. Simulation results show that resilient back propagation model performs better than RBF network, regression network and LS-SVR model. Model implementation has been done in SIMULINK platform showing the online detection of abnormal data and real time estimation of cement Blaine from the knowledge of the input variables. Finally, closed loop study shows how the model can be effectively utilized for maintaining cement fineness at desired value.

摘要

水泥磨中的颗粒大小软测量对于保持所需的水泥细度或比表面积将有很大帮助。尽管立磨(VRM)越来越多地用于熟料粉磨,但关于 VRM 建模的研究工作却很少。本文报道了基于从水泥厂收集的磨机数据,为在线监测水泥细度而设计的三种前馈神经网络模型和 VRM 的最小二乘支持向量回归(LS-SVR)模型。在数据预处理步骤中,对各种异常值检测算法进行了比较研究。随后,为了进行模型开发,提出了基于算法的数据分割优于随机选择的优势。使用 Kennard-Stone 最大内距准则(CADEX 算法)获得的训练数据集用于开发 LS-SVR、反向传播神经网络、径向基函数神经网络和广义回归神经网络模型。仿真结果表明,弹性反向传播模型的性能优于 RBF 网络、回归网络和 LS-SVR 模型。模型的实现是在 SIMULINK 平台上完成的,它展示了如何从输入变量的知识中在线检测异常数据并实时估计水泥比表面积。最后,闭环研究表明模型如何有效地用于将水泥细度保持在所需值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验