Vuong Le Thuy, Song Qi, Lee Hee Joo, Roffel Ad F, Shin Seok-Ho, Shin Young G, Dueker Stephen R
Sivvon Biolabs, 1520 E, Covell 311, Davis, CA 95618, USA; Sivvon Biolabs, 1520 E, Covell 311, Davis, CA 95618, USA.
BioCore Co., Ltd, Seoul, IT Mi-Rae Tower, 8F (33 Digitalro 9-ghil) #60-21 Gasan-dong, Geumcheon-gu, Seoul, South Korea 08511; BioCore Co., Ltd, Seoul, IT Mi-Rae Tower, 8F (33 Digitalro 9-ghil) #60-21 Gasan-dong, Geumcheon-gu, Seoul, South Korea 08511.
Future Sci OA. 2015 Dec 23;2(1):FSO74. doi: 10.4155/fso.15.74. eCollection 2016 Mar.
C-radiolabeled (radiocarbon) drug studies are central to defining the disposition of therapeutics in clinical development. Concerns over radiation, however, have dissuaded investigators from conducting these studies as often as their utility may merit. Accelerator mass spectrometry (AMS), originally designed for carbon dating and geochronology, has changed the outlook for in-human radiolabeled testing. The high sensitivity of AMS affords human clinical testing with vastly reduced radiative (microtracing) and chemical exposures (microdosing). Early iterations of AMS were unsuitable for routine biomedical use due to the instruments' large size and associated per sample costs. The situation is changing with advances in the core and peripheral instrumentation. We review the important milestones in applied AMS research and recent advances in the core technology platform. We also look ahead to an entirely new class of C detection systems that use lasers to measure carbon dioxide in small gas cells.
碳-放射性标记(放射性碳)药物研究对于确定临床开发中治疗药物的处置情况至关重要。然而,对辐射的担忧使得研究人员不再像其效用所应有的那样频繁进行此类研究。加速器质谱(AMS)最初设计用于碳年代测定和地质年代学,它改变了人体放射性标记测试的前景。AMS的高灵敏度使得人体临床试验的辐射暴露(微量示踪)和化学暴露(微剂量给药)大幅减少。早期的AMS迭代版本由于仪器尺寸大以及每个样本的相关成本,不适合常规生物医学使用。随着核心和外围仪器的进步,这种情况正在发生变化。我们回顾了应用AMS研究的重要里程碑以及核心技术平台的最新进展。我们还展望了一类全新的碳检测系统,该系统使用激光来测量小气体池中二氧化碳的含量。