Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), and ‡School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China.
ACS Nano. 2017 Jan 24;11(1):1054-1063. doi: 10.1021/acsnano.6b07927. Epub 2017 Jan 3.
Herein, a donor-acceptor-donor (D-A-D) structured small molecule (DPP-TPA) is designed and synthesized for photoacoustic imaging (PAI) guided photodynamic/photothermal synergistic therapy. In the diketopyrrolopyrrole (DPP) molecule, a thiophene group is contained to increase the intersystem crossing (ISC) ability through the heavy atom effect. Simultaneously, triphenylamine (TPA) is introduced for bathochromic shift absorption as well as charge transport capacity enhancement. After formation of nanoparticles (NPs, ∼76 nm) by reprecipitation, the absorption of DPP-TPA NPs further displays obvious bathochromic-shift with the maximum absorption peak at 660 nm. What's more, the NPs architecture enhances the D-A-D structure, which greatly increases the charge transport capacity and impels the charge to generate heat by light. DPP-TPA NPs present high photothermal conversion efficiency (η = 34.5%) and excellent singlet oxygen (O) generation (Φ = 33.6%) under 660 nm laser irradiation. PAI, with high spatial resolution and deep biotissue penetration, indicates DPP-TPA NPs can rapidly target the tumor sites within 2 h by the enhanced permeability and retention (EPR) effect. Importantly, DPP-TPA NPs could effectively hinder the tumor growth by photodynamic/photothermal synergistic therapy in vivo even at a low dosage (0.2 mg/kg) upon laser irradiation (660 nm 1.0 W/cm). This study illuminates the photothermal conversion mechanism of small organic NPs and demonstrates the promising application of DPP-TPA NPs in PAI guided phototherapy.
本文设计并合成了一种给体-受体-给体(D-A-D)结构的小分子(DPP-TPA),用于光声成像(PAI)引导的光动力/光热协同治疗。在二酮吡咯并吡咯(DPP)分子中,噻吩基团的存在通过重原子效应增加了系间穿越(ISC)能力。同时,三苯胺(TPA)的引入增强了分子的吸光能力,实现了光谱红移,提高了载流子传输能力。通过再沉淀形成纳米颗粒(NPs,约 76nm)后,DPP-TPA NPs 的吸收进一步显示出明显的红移,最大吸收峰位于 660nm。此外,纳米颗粒的结构增强了 D-A-D 结构,极大地提高了载流子传输能力,并促使电荷通过光产生热量。在 660nm 激光照射下,DPP-TPA NPs 表现出高的光热转换效率(η=34.5%)和优异的单线态氧(O)生成效率(Φ=33.6%)。具有高空间分辨率和深生物组织穿透能力的光声成像(PAI)表明,通过增强的通透性和保留(EPR)效应,DPP-TPA NPs 可以在 2 小时内迅速靶向肿瘤部位。重要的是,即使在低剂量(0.2mg/kg)激光照射下(660nm,1.0W/cm),DPP-TPA NPs 也可以通过光动力/光热协同治疗有效地抑制肿瘤生长。本研究阐明了小分子光热转换的机制,并展示了 DPP-TPA NPs 在 PAI 引导的光疗中的应用前景。