Wang Rui, Lu Guining, Lin Haozhong, Huang Kaibo, Tang Ting, Xue Xiuling, Yang Xingjian, Yin Hua, Dang Zhi
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China.
Environ Pollut. 2017 Mar;222:331-337. doi: 10.1016/j.envpol.2016.12.030. Epub 2016 Dec 26.
The relative significance of H-atom transfer versus electron transfer in the dehalogenation of halogenated organic compounds (HOCs) in bimetallic systems has long been debated. In this study, we have investigated this question through the case study of the debromination of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47). The debromination rates of isomer products of BDE-47 by palladized nano zero-valent iron (n-ZVI/Pd) in the same reactor were compared. The results confirmed a shift in the debromination pathway of BDE-47 when treated with unpalladized nano zero-valent iron (n-ZVI) vs. treatment with n-ZVI/Pd. Study showed that BDEs could be rapidly debrominated in a palladium-H system, and the debromination pathway in this system is the same as that in the n-ZVI/Pd system. These results suggest that the H-atom species adsorbed on the surface of palladium are responsible for the enhanced reaction rates and the shift of the debromination pathway in the n-ZVI/Pd system. The Mulliken charges, calculated with density functional theory, on bromine atoms of PBDEs were directly correlated with the susceptibility to the e-transfer pathway in the n-ZVI system and inversely correlated with the susceptibility to the H-transfer pathway in n-ZVI/Pd system. These experimentally verified correlations in BDE-47 permit the prediction of the dominant debromination pathway in other BDEs.
在双金属体系中,卤代有机化合物(HOCs)脱卤过程中氢原子转移与电子转移的相对重要性长期以来一直存在争议。在本研究中,我们通过对2,2',4,4'-四溴二苯醚(BDE-47)脱溴的案例研究来探讨这个问题。比较了在同一反应器中钯负载的纳米零价铁(n-ZVI/Pd)对BDE-47异构体产物的脱溴速率。结果证实,用未负载钯的纳米零价铁(n-ZVI)处理与用n-ZVI/Pd处理时,BDE-47的脱溴途径发生了转变。研究表明,多溴二苯醚(BDEs)在钯-氢体系中能快速脱溴,且该体系中的脱溴途径与n-ZVI/Pd体系相同。这些结果表明,吸附在钯表面的氢原子物种是n-ZVI/Pd体系中反应速率提高和脱溴途径转变的原因。用密度泛函理论计算的多溴联苯醚(PBDEs)溴原子上的穆利肯电荷,与n-ZVI体系中电子转移途径的敏感性直接相关,与n-ZVI/Pd体系中氢转移途径的敏感性呈负相关。这些在BDE-47中通过实验验证的相关性,使得预测其他BDEs中的主要脱溴途径成为可能。