Leu K, Boxerman J L, Ellingson B M
From the University of California, Los Angeles Brain Tumor Imaging Laboratory (K.A.B.L., B.M.E.), Center for Computer Vision and Imaging Biomarkers.
Department of Bioengineering (K.A.B.L., B.M.E.), Henry Samueli School of Engineering and Applied Science.
AJNR Am J Neuroradiol. 2017 Mar;38(3):478-484. doi: 10.3174/ajnr.A5027. Epub 2016 Dec 29.
DSC perfusion MR imaging assumes that the contrast agent remains intravascular; thus, disruptions in the blood-brain barrier common in brain tumors can lead to errors in the estimation of relative CBV. Acquisition strategies, including the choice of flip angle, TE, TR, and preload dose and incubation time, along with post hoc leakage-correction algorithms, have been proposed as means for combating these leakage effects. In the current study, we used DSC-MR imaging simulations to examine the influence of these various acquisition parameters and leakage-correction strategies on the faithful estimation of CBV.
DSC-MR imaging simulations were performed in 250 tumors with perfusion characteristics randomly generated from the distributions of real tumor population data, and comparison of leakage-corrected CBV was performed with a theoretic curve with no permeability. Optimal strategies were determined by protocol with the lowest mean error.
The following acquisition strategies (flip angle/TE/TR and contrast dose allocation for preload and bolus) produced high CBV fidelity, as measured by the percentage difference from a hypothetic tumor with no leakage: 1) 35°/35 ms/1.5 seconds with no preload and full dose for DSC-MR imaging, 2) 35°/25 ms/1.5 seconds with ¼ dose preload and ¾ dose bolus, 3) 60°/35 ms/2.0 seconds with ½ dose preload and ½ dose bolus, and 4) 60°/35 ms/1.0 second with 1 dose preload and 1 dose bolus.
Results suggest that a variety of strategies can yield similarly high fidelity in CBV estimation, namely those that balance T1- and T2*-relaxation effects due to contrast agent extravasation.
动态磁敏感对比增强灌注磁共振成像(DSC灌注MRI)假定对比剂保持在血管内;因此,脑肿瘤中常见的血脑屏障破坏会导致相对脑血容量(CBV)估计出现误差。已提出包括翻转角、回波时间(TE)、重复时间(TR)、预负荷剂量和孵育时间的选择在内的采集策略,以及事后泄漏校正算法,作为对抗这些泄漏效应的手段。在本研究中,我们使用DSC-MRI模拟来检验这些不同采集参数和泄漏校正策略对CBV准确估计的影响。
在250个具有从真实肿瘤群体数据分布中随机生成的灌注特征的肿瘤中进行DSC-MRI模拟,并将校正泄漏后的CBV与无通透性的理论曲线进行比较。通过具有最低平均误差的方案确定最佳策略。
以下采集策略(翻转角/TE/TR以及预负荷和团注的对比剂剂量分配)产生了高CBV保真度,以与无泄漏的假设肿瘤的百分比差异衡量:1)DSC-MRI成像无预负荷且全剂量时为35°/35 ms/1.5秒,2)¼剂量预负荷和¾剂量团注时为35°/25 ms/1.5秒,3)½剂量预负荷和½剂量团注时为60°/35 ms/2.0秒,4)1剂量预负荷和1剂量团注时为60°/35 ms/1.0秒。
结果表明,多种策略在CBV估计中可产生相似的高保真度,即那些平衡由于对比剂外渗引起的T1和T2*弛豫效应的策略。