Chakraborty Tapash, Manaselyan Aram, Barseghyan Manuk
Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada.
J Phys Condens Matter. 2017 Feb 22;29(7):075605. doi: 10.1088/1361-648X/aa5168. Epub 2016 Dec 30.
The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov-Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number.
发现在施加磁场中包含少量相互作用电子的ZnO量子环的电子态和光学跃迁与传统半导体系统(如GaAs环)中的情况有很大不同。ZnO系统的强塞曼相互作用和库仑相互作用是ZnO中电子系统的两个重要特性,它们对环的电子态和光学性质产生深远影响。特别是,我们的结果表明,ZnO量子环中的阿哈罗诺夫 - 玻姆(AB)效应强烈依赖于电子数。实际上,对于ZnO环中的两个电子,AB振荡变得非周期性,而对于三个相互作用的电子,AB振荡完全消失。因此,与传统量子环拓扑不同,这里的AB效应(以及由此产生的持续电流)可以通过改变电子数来控制。