Suppr超能文献

利用深度学习对磁共振成像(MRI)容积中的乳腺和纤维腺组织进行分割。

Using deep learning to segment breast and fibroglandular tissue in MRI volumes.

作者信息

Dalmış Mehmet Ufuk, Litjens Geert, Holland Katharina, Setio Arnaud, Mann Ritse, Karssemeijer Nico, Gubern-Mérida Albert

机构信息

Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.

出版信息

Med Phys. 2017 Feb;44(2):533-546. doi: 10.1002/mp.12079.

Abstract

PURPOSE

Automated segmentation of breast and fibroglandular tissue (FGT) is required for various computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques, such atlas, template matching, or, edge and surface detection, have been applied to solve this task. However, applicability of these methods is usually limited by the characteristics of the images used in the study datasets, while breast MRI varies with respect to the different MRI protocols used, in addition to the variability in breast shapes. All this variability, in addition to various MRI artifacts, makes it a challenging task to develop a robust breast and FGT segmentation method using traditional approaches. Therefore, in this study, we investigated the use of a deep-learning approach known as "U-net."

MATERIALS AND METHODS

We used a dataset of 66 breast MRI's randomly selected from our scientific archive, which includes five different MRI acquisition protocols and breasts from four breast density categories in a balanced distribution. To prepare reference segmentations, we manually segmented breast and FGT for all images using an in-house developed workstation. We experimented with the application of U-net in two different ways for breast and FGT segmentation. In the first method, following the same pipeline used in traditional approaches, we trained two consecutive (2C) U-nets: first for segmenting the breast in the whole MRI volume and the second for segmenting FGT inside the segmented breast. In the second method, we used a single 3-class (3C) U-net, which performs both tasks simultaneously by segmenting the volume into three regions: nonbreast, fat inside the breast, and FGT inside the breast. For comparison, we applied two existing and published methods to our dataset: an atlas-based method and a sheetness-based method. We used Dice Similarity Coefficient (DSC) to measure the performances of the automated methods, with respect to the manual segmentations. Additionally, we computed Pearson's correlation between the breast density values computed based on manual and automated segmentations.

RESULTS

The average DSC values for breast segmentation were 0.933, 0.944, 0.863, and 0.848 obtained from 3C U-net, 2C U-nets, atlas-based method, and sheetness-based method, respectively. The average DSC values for FGT segmentation obtained from 3C U-net, 2C U-nets, and atlas-based methods were 0.850, 0.811, and 0.671, respectively. The correlation between breast density values based on 3C U-net and manual segmentations was 0.974. This value was significantly higher than 0.957 as obtained from 2C U-nets (P < 0.0001, Steiger's Z-test with Bonferoni correction) and 0.938 as obtained from atlas-based method (P = 0.0016).

CONCLUSIONS

In conclusion, we applied a deep-learning method, U-net, for segmenting breast and FGT in MRI in a dataset that includes a variety of MRI protocols and breast densities. Our results showed that U-net-based methods significantly outperformed the existing algorithms and resulted in significantly more accurate breast density computation.

摘要

目的

乳腺磁共振成像(MRI)的各种计算机辅助应用需要对乳腺和纤维腺体组织(FGT)进行自动分割。传统的图像分析和计算机视觉技术,如图集、模板匹配或边缘与表面检测,已被用于解决此任务。然而,这些方法的适用性通常受研究数据集中所使用图像的特征限制,而乳腺MRI除了乳腺形状的可变性外,还因所使用的不同MRI协议而有所不同。所有这些可变性,再加上各种MRI伪影,使得使用传统方法开发一种强大的乳腺和FGT分割方法成为一项具有挑战性的任务。因此,在本研究中,我们研究了一种名为“U-net”的深度学习方法的应用。

材料与方法

我们使用了从我们的科学档案中随机选择的66例乳腺MRI数据集,其中包括五种不同的MRI采集协议以及来自四个乳腺密度类别的乳腺,且分布均衡。为了准备参考分割,我们使用内部开发的工作站对所有图像手动分割乳腺和FGT。我们以两种不同方式试验了U-net在乳腺和FGT分割中的应用。在第一种方法中,遵循传统方法中使用的相同流程,我们训练了两个连续的(2C)U-net:第一个用于在整个MRI体积中分割乳腺,第二个用于在分割出的乳腺内部分割FGT。在第二种方法中,我们使用了一个单类3分类(3C)U-net,它通过将体积分割为三个区域:非乳腺、乳腺内的脂肪和乳腺内的FGT,同时执行这两项任务。为了进行比较,我们将两种现有的已发表方法应用于我们的数据集:基于图谱的方法和基于片层度的方法。我们使用骰子相似系数(DSC)来衡量自动方法相对于手动分割的性能。此外,我们计算了基于手动和自动分割计算出的乳腺密度值之间的皮尔逊相关性。

结果

从3C U-net、2C U-net、基于图谱的方法和基于片层度的方法获得的乳腺分割平均DSC值分别为0.933、0.944、0.863和0.848。从3C U-net、2C U-net和基于图谱的方法获得的FGT分割平均DSC值分别为0.850、0.811和0.671。基于3C U-net和手动分割的乳腺密度值之间的相关性为0.974。该值显著高于从2C U-net获得的0.957(P < 0.0001,经Bonferroni校正的Steiger Z检验)和从基于图谱的方法获得的0.938(P = 0.0016)。

结论

总之,我们将深度学习方法U-net应用于包含各种MRI协议和乳腺密度的数据集的MRI乳腺和FGT分割。我们的结果表明,基于U-net的方法明显优于现有算法,并在乳腺密度计算方面产生了显著更准确的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验