基于非脂肪饱和模型的迁移学习的脂肪饱和磁共振图像 U-Net 乳腺密度分割方法的开发。
Development of U-Net Breast Density Segmentation Method for Fat-Sat MR Images Using Transfer Learning Based on Non-Fat-Sat Model.
机构信息
Department of Radiological Sciences, University of California, Irvine, CA, USA.
Department of Medical Imaging, Taichung Tzu-Chi Hospital, Taichung, Taiwan.
出版信息
J Digit Imaging. 2021 Aug;34(4):877-887. doi: 10.1007/s10278-021-00472-z. Epub 2021 Jul 9.
To develop a U-net deep learning method for breast tissue segmentation on fat-sat T1-weighted (T1W) MRI using transfer learning (TL) from a model developed for non-fat-sat images. The training dataset (N = 126) was imaged on a 1.5 T MR scanner, and the independent testing dataset (N = 40) was imaged on a 3 T scanner, both using fat-sat T1W pulse sequence. Pre-contrast images acquired in the dynamic-contrast-enhanced (DCE) MRI sequence were used for analysis. All patients had unilateral cancer, and the segmentation was performed using the contralateral normal breast. The ground truth of breast and fibroglandular tissue (FGT) segmentation was generated using a template-based segmentation method with a clustering algorithm. The deep learning segmentation was performed using U-net models trained with and without TL, by using initial values of trainable parameters taken from the previous model for non-fat-sat images. The ground truth of each case was used to evaluate the segmentation performance of the U-net models by calculating the dice similarity coefficient (DSC) and the overall accuracy based on all pixels. Pearson's correlation was used to evaluate the correlation of breast volume and FGT volume between the U-net prediction output and the ground truth. In the training dataset, the evaluation was performed using tenfold cross-validation, and the mean DSC with and without TL was 0.97 vs. 0.95 for breast and 0.86 vs. 0.80 for FGT. When the final model developed with and without TL from the training dataset was applied to the testing dataset, the mean DSC was 0.89 vs. 0.83 for breast and 0.81 vs. 0.81 for FGT, respectively. Application of TL not only improved the DSC, but also decreased the required training case number. Lastly, there was a high correlation (R > 0.90) for both the training and testing datasets between the U-net prediction output and ground truth for breast volume and FGT volume. U-net can be applied to perform breast tissue segmentation on fat-sat images, and TL is an efficient strategy to develop a specific model for each different dataset.
利用从非脂肪饱和图像模型中转移学习(TL)的方法,开发用于在脂肪饱和 T1 加权(T1W)磁共振成像上进行乳腺组织分割的 U-net 深度学习方法。训练数据集(N=126)在 1.5T MR 扫描仪上成像,独立测试数据集(N=40)在 3T 扫描仪上成像,均使用脂肪饱和 T1W 脉冲序列。使用动态对比增强(DCE)磁共振成像序列获得的对比前图像进行分析。所有患者均为单侧癌症,并且使用对侧正常乳房进行分割。使用基于模板的分割方法和聚类算法生成乳腺和纤维腺体组织(FGT)分割的真实数据。使用 U-net 模型进行深度学习分割,这些模型使用来自非脂肪饱和图像的先前模型的可训练参数的初始值进行训练,同时使用和不使用 TL。使用每个病例的真实数据,通过计算所有像素的 Dice 相似系数(DSC)和总体准确性,评估 U-net 模型的分割性能。使用 Pearson 相关性评估 U-net 预测输出与真实数据之间的乳腺体积和 FGT 体积的相关性。在训练数据集中,使用十折交叉验证进行评估,使用和不使用 TL 的平均 DSC 分别为 0.97 对乳腺和 0.86 对 FGT。当从训练数据集开发的最终模型与 TL 一起应用于测试数据集时,平均 DSC 分别为 0.89 对乳腺和 0.81 对 FGT。应用 TL 不仅提高了 DSC,而且减少了所需的训练病例数量。最后,在训练和测试数据集上,U-net 预测输出与乳腺体积和 FGT 体积的真实数据之间均存在高度相关性(R>0.90)。U-net 可用于在脂肪饱和图像上进行乳腺组织分割,TL 是为每个不同数据集开发特定模型的有效策略。