Fasoli Anna, Dang James, Johnson Jeffrey S, Gouw Aaron H, Fogli Iseppe Alex, Ishida Andrew T
Department of Neurobiology, Physiology and Behavior, University of California, Davis, California.
Department of Ophthalmology and Vision Science, University of California, Sacramento, California.
J Comp Neurol. 2017 May 1;525(7):1707-1730. doi: 10.1002/cne.24166. Epub 2017 Feb 13.
Dopamine- and tyrosine hydroxylase-immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABA R ), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. J. Comp. Neurol. 525:1707-1730, 2017. © 2016 Wiley Periodicals, Inc.
多巴胺和酪氨酸羟化酶免疫阳性细胞(TH细胞)在视觉驱动信号流经视网膜光感受器、双极细胞和神经节细胞时对其进行调节。先前的研究表明,在谷氨酸能突触使内网状层的TH细胞树突去极化后,TH细胞从在内、外网状层呈树枝状分布的曲张轴突释放多巴胺,并且这些去极化会传播至曲张体。尽管有人提出这些兴奋性突触形成于类似树突棘的附属结构上,但在迄今为止所检测的大多数物种的TH细胞上或在暴露于谷氨酸受体激动剂时会释放多巴胺的TH细胞胞体上均未发现树突棘。通过使用能够保留视网膜近端神经元形态的实验方案,我们研究了成年大鼠TH细胞的形状、分布及与突触相关的免疫反应性。我们在此报告,TH细胞胞体、逐渐变细且有曲张的内网状层神经突以及有曲张的外网状层神经突均带有树突棘,其中一些树突棘对谷氨酸受体和突触后致密蛋白呈免疫阳性(即GluR1、GluR4、NR1、PSD - 95和PSD - 93),TH细胞胞体和逐渐变细的神经突对γ - 氨基丁酸(GABA)受体亚基(GABA R)也呈免疫阳性,并且在内网状层中,在一些GluR1和TH共定位的附近发现了一种突触带特异性蛋白(RIBEYE)。这些结果确定了以前未描述的谷氨酸能和GABA能输入可能刺激和抑制多巴胺释放的位点,特别是在胞体处以及沿着从这些胞体发出并在视网膜不同层次呈树枝状分布的曲张神经突上。《比较神经学杂志》525:1707 - 1730, 2017。© 2016威利期刊公司