Minamisono K, Rossi D M, Beerwerth R, Fritzsche S, Garand D, Klose A, Liu Y, Maaß B, Mantica P F, Miller A J, Müller P, Nazarewicz W, Nörtershäuser W, Olsen E, Pearson M R, Reinhard P-G, Saperstein E E, Sumithrarachchi C, Tolokonnikov S V
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA.
Phys Rev Lett. 2016 Dec 16;117(25):252501. doi: 10.1103/PhysRevLett.117.252501. Epub 2016 Dec 15.
Bunched-beam collinear laser spectroscopy is performed on neutron deficient ^{52,53}Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ⟨r^{2}⟩ of ^{52,53}Fe are determined relative to stable ^{56}Fe as δ⟨r^{2}⟩^{56,52}=-0.034(13) fm^{2} and δ⟨r^{2}⟩^{56,53}=-0.218(13) fm^{2}, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ⟨r^{2}⟩. The values of δ⟨r^{2}⟩ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δ⟨r^{2}⟩ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ⟨r^{2}⟩ of closed-shell Ca isotopes.
对通过飞行中分离并随后气体慢化制备的缺中子(^{52,53}Fe)进行了束团束共线激光光谱实验。这种新颖的方案是激光光谱学中到达远离稳定线核素的重要一步。相对于稳定的(^{56}Fe),通过原子超精细结构的同位素位移确定了(^{52,53}Fe)的微分均方电荷半径(\delta\langle r^{2}\rangle),分别为(\delta\langle r^{2}\rangle^{56,52} = -0.034(13)\ fm^{2})和(\delta\langle r^{2}\rangle^{56,53} = -0.218(13)\ fm^{2})。采用多组态狄拉克 - 福克方法计算原子因子以推导(\delta\langle r^{2}\rangle)。(\delta\langle r^{2}\rangle)的值在(N = 28)中子壳层闭壳处呈现最小值。使用具有法扬斯和斯凯姆能量密度泛函的核密度泛函理论来解释这些数据。(\delta\langle r^{2}\rangle)沿铁同位素链的趋势是由单粒子壳层结构、配对和极化效应之间的相互作用导致的,并为理解闭壳钙同位素(\delta\langle r^{2}\rangle)的复杂趋势提供了重要数据。