Bar-Lavan Yael, Shemesh Netta, Dror Shiran, Ofir Rivka, Yeger-Lotem Esti, Ben-Zvi Anat
Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel.
PLoS Genet. 2016 Dec 30;12(12):e1006531. doi: 10.1371/journal.pgen.1006531. eCollection 2016 Dec.
Safeguarding the proteome is central to the health of the cell. In multi-cellular organisms, the composition of the proteome, and by extension, protein-folding requirements, varies between cells. In agreement, chaperone network composition differs between tissues. Here, we ask how chaperone expression is regulated in a cell type-specific manner and whether cellular differentiation affects chaperone expression. Our bioinformatics analyses show that the myogenic transcription factor HLH-1 (MyoD) can bind to the promoters of chaperone genes expressed or required for the folding of muscle proteins. To test this experimentally, we employed HLH-1 myogenic potential to genetically modulate cellular differentiation of Caenorhabditis elegans embryonic cells by ectopically expressing HLH-1 in all cells of the embryo and monitoring chaperone expression. We found that HLH-1-dependent myogenic conversion specifically induced the expression of putative HLH-1-regulated chaperones in differentiating muscle cells. Moreover, disrupting the putative HLH-1-binding sites on ubiquitously expressed daf-21(Hsp90) and muscle-enriched hsp-12.2(sHsp) promoters abolished their myogenic-dependent expression. Disrupting HLH-1 function in muscle cells reduced the expression of putative HLH-1-regulated chaperones and compromised muscle proteostasis during and after embryogenesis. In turn, we found that modulating the expression of muscle chaperones disrupted the folding and assembly of muscle proteins and thus, myogenesis. Moreover, muscle-specific over-expression of the DNAJB6 homolog DNJ-24, a limb-girdle muscular dystrophy-associated chaperone, disrupted the muscle chaperone network and exposed synthetic motility defects. We propose that cellular differentiation could establish a proteostasis network dedicated to the folding and maintenance of the muscle proteome. Such cell-specific proteostasis networks can explain the selective vulnerability that many diseases of protein misfolding exhibit even when the misfolded protein is ubiquitously expressed.
保护蛋白质组对细胞健康至关重要。在多细胞生物体中,蛋白质组的组成以及由此延伸的蛋白质折叠需求在不同细胞之间存在差异。与此一致的是,伴侣蛋白网络的组成在不同组织之间也有所不同。在这里,我们探讨伴侣蛋白的表达是如何以细胞类型特异性的方式进行调控的,以及细胞分化是否会影响伴侣蛋白的表达。我们的生物信息学分析表明,成肌转录因子HLH-1(肌分化因子)可以结合到伴侣蛋白基因的启动子上,这些基因在肌肉蛋白折叠过程中表达或发挥作用。为了通过实验验证这一点,我们利用HLH-1的成肌潜能,通过在胚胎的所有细胞中异位表达HLH-1并监测伴侣蛋白的表达,来基因调控秀丽隐杆线虫胚胎细胞的分化。我们发现,依赖HLH-1的成肌转化在分化的肌肉细胞中特异性地诱导了推测受HLH-1调控的伴侣蛋白的表达。此外,破坏普遍表达的daf-21(热休克蛋白90)和肌肉富集的hsp-12.2(小分子热休克蛋白)启动子上推测的HLH-1结合位点,消除了它们的成肌依赖性表达。破坏肌肉细胞中HLH-1的功能会降低推测受HLH-1调控的伴侣蛋白的表达,并在胚胎发育期间和之后损害肌肉蛋白质稳态。反过来,我们发现调节肌肉伴侣蛋白的表达会破坏肌肉蛋白的折叠和组装,从而影响肌肉生成。此外,肌肉特异性过表达DNAJB6同源物DNJ-24(一种与肢带型肌营养不良相关的伴侣蛋白)会破坏肌肉伴侣蛋白网络,并导致合成运动缺陷。我们提出,细胞分化可以建立一个专门用于肌肉蛋白质组折叠和维持的蛋白质稳态网络。这种细胞特异性的蛋白质稳态网络可以解释许多蛋白质错误折叠疾病所表现出的选择性易感性,即使错误折叠的蛋白质在全身都有表达。