Juárez-Muñoz Yectivani, Rivera-Olvera Alejandro, Ramos-Languren Laura E, Escobar Martha L
División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510 México, Mexico.
División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510 México, Mexico.
Neurobiol Learn Mem. 2017 Mar;139:56-62. doi: 10.1016/j.nlm.2016.12.015. Epub 2016 Dec 27.
CaMKII has been proposed as a molecular substrate for long-term memory storage due to its capacity to maintain an active autophosporylated state even after the decay of the external stimuli. The hippocampal mossy fiber-CA3 pathway (MF-CA3) is considered as a relevant area for acquisition and storage of different learning tasks. MF-CA3 pathway exhibits a form of LTP characterized by a slow initial increase in the EPSP slope that is independent of NMDA receptors activation. Our previous studies show that application of high frequency stimulation sufficient to elicit MF-CA3 LTP produces structural reorganization, in a manner independent of LTP induction, at the stratum oriens of hippocampal CA3 area 7days after stimulation. However, the molecular mechanisms that underlie the maintenance of MF-CA3 LTP as well as the concomitant structural reorganization in this area remain to be elucidated. Here we show that acute microinfusion of myr-CaMKIINtide, a noncompetitive inhibitor of CaMKII, in the hippocampal CA3 area of adult rats during the late-phase of in vivo MF-CA3 LTP blocked its maintenance and prevented the accompanying morphological reorganization in CA3 area. These findings support the idea that CaMKII is a key molecular substrate for the long-term hippocampal synaptic plasticity maintenance.
由于即使在外部刺激消退后仍有能力维持活跃的自身磷酸化状态,钙/钙调蛋白依赖性蛋白激酶II(CaMKII)已被认为是长期记忆存储的分子底物。海马苔藓纤维 - CA3通路(MF - CA3)被视为获取和存储不同学习任务的相关区域。MF - CA3通路表现出一种长时程增强(LTP)形式,其特征是兴奋性突触后电位(EPSP)斜率最初缓慢增加,且独立于N - 甲基 - D - 天冬氨酸(NMDA)受体激活。我们之前的研究表明,在刺激7天后,施加足以引发MF - CA3 LTP的高频刺激会在海马CA3区的海马下托以一种独立于LTP诱导的方式产生结构重组。然而,MF - CA3 LTP维持以及该区域伴随的结构重组背后的分子机制仍有待阐明。在此我们表明,在成年大鼠体内MF - CA3 LTP晚期,于海马CA3区急性微量注射CaMKII的非竞争性抑制剂myr - CaMKIINtide,会阻断其维持并阻止CA3区伴随的形态学重组。这些发现支持了CaMKII是长期海马突触可塑性维持的关键分子底物这一观点。