Suppr超能文献

欧洲沿海水域中米氏凯伦藻和棕囊藻有害藻华的卫星判别:海洋颜色数据的合并分类

Satellite discrimination of Karenia mikimotoi and Phaeocystis harmful algal blooms in European coastal waters: Merged classification of ocean colour data.

作者信息

Kurekin A A, Miller P I, Van der Woerd H J

机构信息

Plymouth Marine Laboratory, Remote Sensing Group, Prospect Place, Plymouth PL1 3DH, UK.

Plymouth Marine Laboratory, Remote Sensing Group, Prospect Place, Plymouth PL1 3DH, UK.

出版信息

Harmful Algae. 2014 Jan;31:163-176. doi: 10.1016/j.hal.2013.11.003. Epub 2013 Dec 11.

Abstract

The detection of dense harmful algal blooms (HABs) by satellite remote sensing is usually based on analysis of chlorophyll-a as a proxy. However, this approach does not provide information about the potential harm of bloom, nor can it identify the dominant species. The developed HAB risk classification method employs a fully automatic data-driven approach to identify key characteristics of water leaving radiances and derived quantities, and to classify pixels into "harmful", "non-harmful" and "no bloom" categories using Linear Discriminant Analysis (LDA). Discrimination accuracy is increased through the use of spectral ratios of water leaving radiances, absorption and backscattering. To reduce the false alarm rate the data that cannot be reliably classified are automatically labelled as "unknown". This method can be trained on different HAB species or extended to new sensors and then applied to generate independent HAB risk maps; these can be fused with other sensors to fill gaps or improve spatial or temporal resolution. The HAB discrimination technique has obtained accurate results on MODIS and MERIS data, correctly identifying 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of Karenia mikimotoi blooms in the Western English Channel. A linear transformation of the ocean colour discriminants is used to estimate harmful cell counts, demonstrating greater accuracy than if based on chlorophyll-a; this will facilitate its integration into a HAB early warning system operating in the southern North Sea.

摘要

利用卫星遥感探测密集型有害藻华(HABs)通常基于对叶绿素a的分析,并以此作为替代指标。然而,这种方法无法提供有关藻华潜在危害的信息,也无法识别优势物种。所开发的有害藻华风险分类方法采用完全自动化的数据驱动方法,以识别离水辐射率和派生量的关键特征,并使用线性判别分析(LDA)将像素分类为“有害”、“无害”和“无藻华”类别。通过使用离水辐射率、吸收和后向散射的光谱比来提高判别精度。为了降低误报率,无法可靠分类的数据会自动标记为“未知”。该方法可以针对不同的有害藻华物种进行训练,或扩展到新的传感器,然后应用于生成独立的有害藻华风险地图;这些地图可以与其他传感器的数据融合,以填补空白或提高空间或时间分辨率。有害藻华判别技术在中分辨率成像光谱仪(MODIS)和中分辨率成像光谱仪(MERIS)数据上取得了准确的结果,正确识别了北海南部89%的球形棕囊藻有害藻华和英吉利海峡西部88%的米氏凯伦藻藻华。利用海洋颜色判别量的线性变换来估计有害细胞数量,其准确性高于基于叶绿素a的估计;这将有助于将其整合到北海南部运行的有害藻华早期预警系统中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验