Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
J Control Release. 2017 Jan 28;246:88-97. doi: 10.1016/j.jconrel.2016.12.016. Epub 2016 Dec 30.
We report on a simple robust procedure for synthesis of generation-4 poly-(amidoamine) (PAMAM) dendrimers with a precisely core positioned single sulforhodamine B molecule. The labelled dendrimers exhibited high fluorescent quantum yields where the absorbance and fluorescence spectrum of the fluorophore was not affected by pH and temperature. Since the stoichiometry of the fluorophore to the dendrimer is 1:1, we were able to directly compare uptake kinetics, the mode of uptake, trafficking and safety of dendrimers of different end-terminal functionality (carboxylated vs. pyrrolidonated) by two phenotypically different human endothelial cell types (the human brain capillary endothelial cell line hCMEC/D3 and human umbilical vein endothelial cells), and without interference of the fluorophore in uptake processes. The results demonstrate comparable uptake kinetics and a predominantly clathrin-mediated endocytotic mechanism, irrespective of dendrimer end-terminal functionality, where the majority of dendrimers are directed to the endo-lysosomal compartments in both cell types. A minor fraction of dendrimers, however, localize to endoplasmic reticulum and the Golgi apparatus, presumably through the recycling endosomes. In contrast to amino-terminated PAMAM dendrimers, we confirm safety of carboxylic acid- and pyrrolidone-terminated PAMAM dendrimers through determination of cell membrane integrity and comprehensive respiratory profiling (measurements of mitochondrial oxidative phosphorylation and determination of its coupling efficiency). Our dendrimer core-labelling approach could provide a new conceptual basis for improved understanding of dendrimer performance within biological settings.
我们报告了一种简单而稳健的方法,用于合成具有精确核心定位的单磺酸基罗丹明 B 分子的四代聚酰胺胺(PAMAM)树状大分子。标记的树状大分子表现出高荧光量子产率,其中荧光团的吸收和荧光光谱不受 pH 值和温度的影响。由于荧光团与树状大分子的化学计量比为 1:1,我们能够直接比较不同末端官能团(羧基化与吡咯烷酮化)的树状大分子的摄取动力学、摄取方式、运输和安全性,这两种末端官能团的树状大分子分别由两种表型不同的人内皮细胞类型(人脑毛细血管内皮细胞系 hCMEC/D3 和人脐静脉内皮细胞)摄取,并且荧光团不会干扰摄取过程。结果表明,摄取动力学相似,并且主要是网格蛋白介导的内吞作用机制,与树状大分子的末端官能团无关,其中大多数树状大分子都被导向两种细胞类型的内体溶酶体区室。然而,一小部分树状大分子定位于内质网和高尔基体,可能是通过再循环内体。与氨基端 PAMAM 树状大分子不同,我们通过测定细胞膜完整性和全面呼吸分析(测量线粒体氧化磷酸化及其偶联效率)来证实羧酸和吡咯烷酮端 PAMAM 树状大分子的安全性。我们的树状大分子核心标记方法可以为在生物环境中更好地理解树状大分子的性能提供新的概念基础。