Hong Seungpyo, Bielinska Anna U, Mecke Almut, Keszler Balazs, Beals James L, Shi Xiangyang, Balogh Lajos, Orr Bradford G, Baker James R, Banaszak Holl Mark M
Program in Applied Physics, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA.
Bioconjug Chem. 2004 Jul-Aug;15(4):774-82. doi: 10.1021/bc049962b.
We have investigated poly(amidoamine) (PAMAM) dendrimer interactions with supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers and KB and Rat2 cell membranes using atomic force microscopy (AFM), enzyme assays, flow cell cytometry, and fluorescence microscopy. Amine-terminated generation 7 (G7) PAMAM dendrimers (10-100 nM) were observed to form holes of 15-40 nm in diameter in aqueous, supported lipid bilayers. G5 amine-terminated dendrimers did not initiate hole formation but expanded holes at existing defects. Acetamide-terminated G5 PAMAM dendrimers did not cause hole formation in this concentration range. The interactions between PAMAM dendrimers and cell membranes were studied in vitro using KB and Rat 2 cell lines. Neither G5 amine- nor acetamide-terminated PAMAM dendrimers were cytotoxic up to a 500 nM concentration. However, the dose dependent release of the cytoplasmic proteins lactate dehydrogenase (LDH) and luciferase (Luc) indicated that the presence of the amine-terminated G5 PAMAM dendrimer decreased the integrity of the cell membrane. In contrast, the presence of acetamide-terminated G5 PAMAM dendrimer had little effect on membrane integrity up to a 500 nM concentration. The induction of permeability caused by the amine-terminated dendrimers was not permanent, and leaking of cytosolic enzymes returned to normal levels upon removal of the dendrimers. The mechanism of how PAMAM dendrimers altered cells was investigated using fluorescence microscopy, LDH and Luc assays, and flow cytometry. This study revealed that (1) a hole formation mechanism is consistent with the observations of dendrimer internalization, (2) cytosolic proteins can diffuse out of the cell via these holes, and (3) dye molecules can be detected diffusing into the cell or out of the cell through the same membrane holes. Diffusion of dendrimers through holes is sufficient to explain the uptake of G5 amine-terminated PAMAM dendrimers into cells and is consistent with the lack of uptake of G5 acetamide-terminated PAMAM dendrimers.
我们使用原子力显微镜(AFM)、酶分析、流动细胞术和荧光显微镜,研究了聚(酰胺胺)(PAMAM)树枝状大分子与支持的1,2-二肉豆蔻酰-sn-甘油-3-磷酸胆碱(DMPC)脂质双层以及KB和Rat2细胞膜之间的相互作用。观察到胺端基第7代(G7)PAMAM树枝状大分子(10 - 100 nM)在水性支持脂质双层中形成直径为15 - 40 nm的孔。G5胺端基树枝状大分子不会引发孔的形成,但会在现有缺陷处扩大孔。在该浓度范围内,乙酰胺端基的G5 PAMAM树枝状大分子不会导致孔的形成。使用KB和Rat 2细胞系在体外研究了PAMAM树枝状大分子与细胞膜之间的相互作用。在高达500 nM的浓度下,G5胺端基和乙酰胺端基的PAMAM树枝状大分子均无细胞毒性。然而,细胞质蛋白乳酸脱氢酶(LDH)和荧光素酶(Luc)的剂量依赖性释放表明,胺端基G5 PAMAM树枝状大分子的存在降低了细胞膜的完整性。相比之下,在高达500 nM的浓度下,乙酰胺端基G5 PAMAM树枝状大分子的存在对膜完整性几乎没有影响。胺端基树枝状大分子引起的通透性诱导不是永久性的,去除树枝状大分子后,胞质酶的泄漏恢复到正常水平。使用荧光显微镜、LDH和Luc分析以及流式细胞术研究了PAMAM树枝状大分子改变细胞的机制。这项研究表明:(1)孔形成机制与树枝状大分子内化的观察结果一致;(2)胞质蛋白可通过这些孔扩散出细胞;(3)可以检测到染料分子通过相同的膜孔扩散进入或扩散出细胞。树枝状大分子通过孔的扩散足以解释G5胺端基PAMAM树枝状大分子进入细胞的摄取情况,并且与G5乙酰胺端基PAMAM树枝状大分子缺乏摄取情况一致。