Shin Yongdae, Berry Joel, Pannucci Nicole, Haataja Mikko P, Toettcher Jared E, Brangwynne Clifford P
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
Cell. 2017 Jan 12;168(1-2):159-171.e14. doi: 10.1016/j.cell.2016.11.054. Epub 2016 Dec 29.
Phase transitions driven by intrinsically disordered protein regions (IDRs) have emerged as a ubiquitous mechanism for assembling liquid-like RNA/protein (RNP) bodies and other membrane-less organelles. However, a lack of tools to control intracellular phase transitions limits our ability to understand their role in cell physiology and disease. Here, we introduce an optogenetic platform that uses light to activate IDR-mediated phase transitions in living cells. We use this "optoDroplet" system to study condensed phases driven by the IDRs of various RNP body proteins, including FUS, DDX4, and HNRNPA1. Above a concentration threshold, these constructs undergo light-activated phase separation, forming spatiotemporally definable liquid optoDroplets. FUS optoDroplet assembly is fully reversible even after multiple activation cycles. However, cells driven deep within the phase boundary form solid-like gels that undergo aging into irreversible aggregates. This system can thus elucidate not only physiological phase transitions but also their link to pathological aggregates.
由内在无序蛋白质区域(IDRs)驱动的相变已成为组装液状RNA/蛋白质(RNP)体和其他无膜细胞器的普遍机制。然而,缺乏控制细胞内相变的工具限制了我们理解它们在细胞生理学和疾病中作用的能力。在这里,我们引入了一个光遗传学平台,该平台利用光来激活活细胞中IDR介导的相变。我们使用这个“光控液滴”系统来研究由各种RNP体蛋白(包括FUS、DDX4和HNRNPA1)的IDRs驱动的凝聚相。在浓度阈值以上,这些构建体经历光激活相分离,形成时空可定义的液体光控液滴。即使经过多个激活循环,FUS光控液滴组装也是完全可逆的。然而,在相边界深处驱动的细胞会形成类似固体的凝胶,这些凝胶会老化成不可逆的聚集体。因此,这个系统不仅可以阐明生理相变,还可以阐明它们与病理聚集体的联系。