Stokes Harold T, Campbell Branton J
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA.
Acta Crystallogr A Found Adv. 2017 Jan 1;73(Pt 1):4-13. doi: 10.1107/S2053273316017629.
This paper presents a general algorithm for generating the isotropy subgroups of superspace extensions of crystallographic space groups involving arbitrary superpositions of multi-k order parameters from incommensurate and commensurate k vectors. Several examples are presented in detail in order to illuminate each step of the algorithm. The practical outcome is that one can now start with any commensurate parent crystal structure and generate a structure model for any conceivable incommensurate modulation of that parent, fully parameterized in terms of order parameters of irreducible representations at the relevant wavevectors. The resulting modulated structures have (3 + d)-dimensional superspace-group symmetry. Because incommensurate structures are now commonly encountered in the context of many scientifically and technologically important functional materials, the opportunity to apply the powerful methods of group representation theory to this broader class of structural distortions is very timely.
本文提出了一种通用算法,用于生成晶体空间群超空间扩展的各向同性子群,该扩展涉及来自非 commensurate 和 commensurate k 向量的多 k 阶参数的任意叠加。为了阐明算法的每一步,详细给出了几个例子。实际结果是,现在可以从任何 commensurate 母晶体结构开始,并为该母晶体的任何可想象的非 commensurate 调制生成一个结构模型,该模型根据相关波矢处不可约表示的序参量进行完全参数化。所得的调制结构具有(3 + d)维超空间群对称性。由于现在在许多科学和技术上重要的功能材料的背景下经常遇到非 commensurate 结构,将群表示理论的强大方法应用于这类更广泛的结构畸变的时机非常合适。