Shigeto Shinsuke, Chang Chun-Fu, Hiramatsu Hirotsugu
Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010, Taiwan.
Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai 980-8578, Japan.
J Phys Chem B. 2017 Jan 26;121(3):490-496. doi: 10.1021/acs.jpcb.6b10779. Epub 2017 Jan 13.
Amyloid fibrils, which are ordered aggregates of proteins or peptides, have attracted keen interest because their deposition causes serious human diseases. Despite many studies utilizing X-ray crystallography, solid-state NMR, and other methods, intermolecular interactions governing the fibril formation remain largely unclear. Here, we used low-frequency Raman (LFR) spectroscopy to investigate the intermolecular β-sheet structure of a core fragment of β-microglobulin amyloid fibrils, βm, in aqueous buffer solutions. The LFR spectra (approximately 10-200 cm) of βm amyloid fibrils measured at different pH values (ranging from 6.8 to 8.0) revealed a broad-spectral pattern with a maximum at ∼80 cm below pH 7.2 and at ∼110 cm above pH 7.4. This observation is attributed to a pH-dependent structural change from an antiparallel to a parallel intermolecular β-sheet structure. Multivariate curve resolution-alternating least-squares (MCR-ALS) analysis enabled us to decompose the apparently monotonous LFR spectra into three distinctly different contributions: intermolecular vibrations of the parallel and antiparallel β-sheets and intramolecular vibrations of the peptide backbone. Peak positions of the obtained LFR bands not only exhibit a much more pronounced difference between the two β-sheets than the conventional amide I band, but they also suggest stronger intermolecular interaction, due presumably to the hydrophobic effect, in the parallel β-sheet than in the antiparallel β-sheet. The present results show that LFR spectroscopy in combination with the MCR-ALS analysis holds promise for real-time tracking of the intermolecular dynamics of amyloid fibril formation under physiological conditions.
淀粉样纤维是蛋白质或肽的有序聚集体,因其沉积会引发严重的人类疾病而备受关注。尽管已有许多利用X射线晶体学、固态核磁共振及其他方法开展的研究,但支配纤维形成的分子间相互作用仍基本不明。在此,我们使用低频拉曼(LFR)光谱研究了β-微球蛋白淀粉样纤维核心片段βm在水性缓冲溶液中的分子间β-折叠结构。在不同pH值(6.8至8.0)下测量的βm淀粉样纤维的LFR光谱(约10 - 200厘米)显示出一种宽谱模式,在pH 7.2以下约80厘米处有一个最大值,在pH 7.4以上约110厘米处有一个最大值。这一观察结果归因于从反平行到平行分子间β-折叠结构的pH依赖性结构变化。多元曲线分辨交替最小二乘法(MCR-ALS)分析使我们能够将看似单调的LFR光谱分解为三种明显不同的成分:平行和反平行β-折叠的分子间振动以及肽主链的分子内振动。所获得的LFR谱带的峰值位置不仅在两种β-折叠之间表现出比传统酰胺I谱带更明显的差异,而且还表明平行β-折叠中可能由于疏水作用而比反平行β-折叠具有更强的分子间相互作用。目前的结果表明,LFR光谱与MCR-ALS分析相结合有望在生理条件下实时跟踪淀粉样纤维形成的分子间动力学。