Suppr超能文献

在出生后骨骼发育过程中,osterix表达细胞需要Tgfbr2。

Tgfbr2 is required in osterix expressing cells for postnatal skeletal development.

作者信息

Peters Sarah B, Wang Ying, Serra Rosa

机构信息

Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham AL 35294, USA.

Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham AL 35294, USA.

出版信息

Bone. 2017 Apr;97:54-64. doi: 10.1016/j.bone.2016.12.017. Epub 2016 Dec 30.

Abstract

Transforming growth factor β (TGFβ) is known to play an important role in early skeletal development. We previously demonstrated that loss of TGFβ receptor II (Tgfbr2) in Prx1-Cre-expressing mesenchyme results in defects in long bones, joints, and the skull vault in mice resulting from reduced naïve mesenchymal proliferation and condensation that interrupted osteoblast differentiation. In contrast, others have shown that the loss of Tgfbr2 in fully differentiated mature osteoblasts results in increased bone volume. To study the role of Tgfbr2 in immature osteoblasts, we generated Osx-Cre;Tgfbr2 mice and found defects in the postnatal development of the skull vault and long bones as compared to controls. No discernible skeletal defects were observed in newborn mice; however, at postnatal day 24 (P24), Tgfbr2-deleted mice demonstrated short stature that correlated with reduced proliferation in the growth plate. X-ray and microCT analysis of long bone and skull from P24 mice showed reduced bone volume. Histomorphometry indicated reductions in osteoblast number but not osteoclast number. Quantitative real-time PCR demonstrated mRNA levels for the osteoblast marker, Runx2, were not altered but mRNA levels of a marker for mature osteoblasts, Bglap, were down in mutant calvaria relative to controls. The mRNA of a proliferation marker, proliferative nuclear cell antigen (PCNA), was also reduced whereas the ratio of Bax2:Bcl2 was unaltered to demonstrate no change in apoptosis. These results suggest proliferation and maturation of immature osteoblasts requires Tgfbr2 signaling and that decreased bone volume in Osx-Cre;Tgfbr2 mice is likely due to fewer mature osteoblasts.

摘要

已知转化生长因子β(TGFβ)在早期骨骼发育中起重要作用。我们先前证明,在表达Prx1-Cre的间充质中TGFβ受体II(Tgfbr2)缺失会导致小鼠长骨、关节和颅顶出现缺陷,这是由于幼稚间充质增殖和凝聚减少,中断了成骨细胞分化所致。相比之下,其他人表明,在完全分化的成熟成骨细胞中Tgfbr2缺失会导致骨量增加。为了研究Tgfbr2在未成熟成骨细胞中的作用,我们构建了Osx-Cre;Tgfbr2小鼠,与对照组相比,发现其颅顶和长骨的出生后发育存在缺陷。在新生小鼠中未观察到明显的骨骼缺陷;然而,在出生后第24天(P24),Tgfbr2缺失的小鼠表现出身材矮小,这与生长板中增殖减少相关。对P24小鼠的长骨和颅骨进行X射线和显微CT分析显示骨量减少。组织形态计量学表明成骨细胞数量减少,但破骨细胞数量未减少。定量实时PCR显示,成骨细胞标志物Runx2的mRNA水平未改变,但与对照组相比,突变颅盖中成熟成骨细胞标志物Bglap的mRNA水平下降。增殖标志物增殖细胞核抗原(PCNA)的mRNA也减少,而Bax2:Bcl2的比值未改变,表明细胞凋亡无变化。这些结果表明,未成熟成骨细胞的增殖和成熟需要Tgfbr2信号传导,并且Osx-Cre;Tgfbr2小鼠骨量减少可能是由于成熟成骨细胞较少。

相似文献

1
Tgfbr2 is required in osterix expressing cells for postnatal skeletal development.
Bone. 2017 Apr;97:54-64. doi: 10.1016/j.bone.2016.12.017. Epub 2016 Dec 30.
2
Tgfbr2 is required for development of the skull vault.
Dev Biol. 2009 Oct 15;334(2):481-90. doi: 10.1016/j.ydbio.2009.08.015. Epub 2009 Aug 21.
3
Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation.
Dev Biol. 2013 Oct 1;382(1):27-37. doi: 10.1016/j.ydbio.2013.08.003. Epub 2013 Aug 8.
4
Nemo-like kinase regulates postnatal skeletal homeostasis.
J Cell Physiol. 2014 Nov;229(11):1736-43. doi: 10.1002/jcp.24625.
6
Skeletal Deformities in Osterix-Cre;Tgfbr2 Mice May Cause Postnatal Death.
Genes (Basel). 2021 Jun 25;12(7):975. doi: 10.3390/genes12070975.
7
Postnatal deletion of β-catenin in osterix-expressing cells is necessary for bone growth and intermittent PTH-induced bone gain.
J Bone Miner Metab. 2018 Sep;36(5):560-572. doi: 10.1007/s00774-017-0873-0. Epub 2017 Nov 9.
9
Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints.
Dev Biol. 2007 Oct 15;310(2):304-16. doi: 10.1016/j.ydbio.2007.07.040. Epub 2007 Aug 9.
10
Osteoblast AMP-Activated Protein Kinase Regulates Postnatal Skeletal Development in Male Mice.
Endocrinology. 2018 Feb 1;159(2):597-608. doi: 10.1210/en.2017-00357.

引用本文的文献

2
TGF-β signaling in the cranial neural crest affects late-stage mandibular bone resorption and length.
Front Physiol. 2024 Oct 15;15:1435594. doi: 10.3389/fphys.2024.1435594. eCollection 2024.
5
TGF-β Signaling in Cranial Neural Crest Affects Late-Stage Mandibular Bone Resorption and Length.
bioRxiv. 2024 May 24:2024.05.24.595783. doi: 10.1101/2024.05.24.595783.
6
Interaction between immuno-stem dual lineages in jaw bone formation and injury repair.
Front Cell Dev Biol. 2024 Mar 6;12:1359295. doi: 10.3389/fcell.2024.1359295. eCollection 2024.
7
The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease.
Cell Res. 2024 Feb;34(2):101-123. doi: 10.1038/s41422-023-00918-9. Epub 2024 Jan 24.
8
Activin receptor-like kinase 3: a critical modulator of development and function of mineralized tissues.
Front Cell Dev Biol. 2023 Jun 30;11:1209817. doi: 10.3389/fcell.2023.1209817. eCollection 2023.
9
Genomic organization, intragenic tandem duplication, and expression analysis of chicken TGFBR2 gene.
Poult Sci. 2022 Dec;101(12):102169. doi: 10.1016/j.psj.2022.102169. Epub 2022 Sep 10.
10
Dynamic transcriptome changes during osteogenic differentiation of bone marrow-derived mesenchymal stem cells isolated from chicken.
Front Cell Dev Biol. 2022 Sep 2;10:940248. doi: 10.3389/fcell.2022.940248. eCollection 2022.

本文引用的文献

1
Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery.
Hum Mutat. 2016 Jun;37(6):524-31. doi: 10.1002/humu.22977. Epub 2016 Mar 14.
2
Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation.
PLoS One. 2015 Dec 21;10(12):e0144982. doi: 10.1371/journal.pone.0144982. eCollection 2015.
3
Coupling Signals between the Osteoclast and Osteoblast: How are Messages Transmitted between These Temporary Visitors to the Bone Surface?
Front Endocrinol (Lausanne). 2015 Mar 24;6:41. doi: 10.3389/fendo.2015.00041. eCollection 2015.
4
Osterix-Cre transgene causes craniofacial bone development defect.
Calcif Tissue Int. 2015 Feb;96(2):129-37. doi: 10.1007/s00223-014-9945-5. Epub 2014 Dec 31.
5
A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones.
Nat Cell Biol. 2014 Dec;16(12):1157-67. doi: 10.1038/ncb3067. Epub 2014 Nov 24.
6
Generation of rodent and human osteoblasts.
Bonekey Rep. 2014 Nov 12;3:585. doi: 10.1038/bonekey.2014.80. eCollection 2014.
7
Skeletal defects in Osterix-Cre transgenic mice.
Transgenic Res. 2015 Feb;24(1):167-72. doi: 10.1007/s11248-014-9828-6. Epub 2014 Aug 20.
9
Isolation and culture of neonatal mouse calvarial osteoblasts.
Methods Mol Biol. 2014;1130:295-305. doi: 10.1007/978-1-62703-989-5_22.
10
Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice.
PLoS One. 2014 Jan 15;9(1):e85161. doi: 10.1371/journal.pone.0085161. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验