Suppr超能文献

模拟听觉注意力。

Modelling auditory attention.

作者信息

Kaya Emine Merve, Elhilali Mounya

机构信息

Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N Charles Street, Barton Hall, Baltimore, MD 21218, USA.

Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N Charles Street, Barton Hall, Baltimore, MD 21218, USA

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;372(1714). doi: 10.1098/rstb.2016.0101. Epub 2017 Jan 2.

Abstract

Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information-a phenomenon referred to as the 'cocktail party problem'. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by 'bottom-up' sensory-driven factors, as well as 'top-down' task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes.This article is part of the themed issue 'Auditory and visual scene analysis'.

摘要

日常生活中的声音很少单独出现。人类和机器都不断被各种刺耳的声音所淹没,需要从中筛选和搜寻相关信息——这一现象被称为“鸡尾酒会问题”。解析声学场景的一个关键因素是注意力的作用,它通过将感官和认知资源集中于刺激空间中的相关信息来调节感知和行为。本文对听觉注意力的建模研究进行了综述。该综述强调了“注意力”一词如何指代众多能够塑造感官处理的行为和认知过程。注意力可以由“自下而上”的感官驱动因素以及“自上而下”的特定任务目标、期望和习得的模式进行调节。本质上,它充当一种选择过程,将感官和认知资源集中于音景中最相关的事件上;相关性由刺激本身(例如一声巨响)或手头的任务(例如在繁忙机场听广播)决定。最近的听觉注意力计算模型为其在杂乱听觉场景中促进感知的作用提供了关键见解。本文是主题为“听觉与视觉场景分析”的特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d2/5206269/4a6702cd87ab/rstb20160101-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验