Suppr超能文献

自组织映射在工程变更过程分析中的文本聚类应用:一个案例研究

On the Use of Self-Organizing Map for Text Clustering in Engineering Change Process Analysis: A Case Study.

作者信息

Pacella Massimo, Grieco Antonio, Blaco Marzia

机构信息

Dipartimento di Ingegneria dell'Innovazione, Università del Salento, 73100 Lecce, Italy.

出版信息

Comput Intell Neurosci. 2016;2016:5139574. doi: 10.1155/2016/5139574. Epub 2016 Dec 4.

Abstract

In modern industry, the development of complex products involves engineering changes that frequently require redesigning or altering the products or their components. In an engineering change process, engineering change requests (ECRs) are documents (forms) with parts written in natural language describing a suggested enhancement or a problem with a product or a component. ECRs initiate the change process and promote discussions within an organization to help to determine the impact of a change and the best possible solution. Although ECRs can contain important details, that is, recurring problems or examples of good practice repeated across a number of projects, they are often stored but not consulted, missing important opportunities to learn from previous projects. This paper explores the use of Self-Organizing Map (SOM) to the problem of unsupervised clustering of ECR texts. A case study is presented in which ECRs collected during the engineering change process of a railways industry are analyzed. The results show that SOM text clustering has a good potential to improve overall knowledge reuse and exploitation.

摘要

在现代工业中,复杂产品的开发涉及工程变更,这常常需要对产品或其组件进行重新设计或更改。在工程变更过程中,工程变更请求(ECR)是一种文档(表格),其中部分内容采用自然语言书写,描述了对产品或组件的建议改进或存在的问题。ECR启动变更过程,并促进组织内部的讨论,以帮助确定变更的影响和最佳解决方案。尽管ECR可能包含重要细节,即多个项目中反复出现的问题或良好实践的示例,但它们常常被存储起来却未被查阅,从而错失了从以前项目中学习的重要机会。本文探讨了使用自组织映射(SOM)来解决ECR文本的无监督聚类问题。文中给出了一个案例研究,分析了在铁路行业工程变更过程中收集到的ECR。结果表明,SOM文本聚类在提高整体知识重用和利用方面具有很大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8aa3/5164909/15a185ae8163/CIN2016-5139574.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验